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Motivation

Multicore processors brought forth large potentials of computing power
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Addressing Unpredictability

State-of-the-art approach:
 Profiling-directed optimization
J Compiler analysis

A typical compilation framework
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Problem #1
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Problem #2

Training Actual
Input Input

Profiling Actual

Behavior Behavior
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Profile-based decision may not be appropriate for actual input
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Problem #3
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Behavior of the same code changes over time
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Problem #4

Extra misses
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How important are cache impacts?
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Impact on Cache Performance

A major loop from benchmark art (scanner.c:594)
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Cache impact is difficult to model statically
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Our proposal

Proposed Performance Tuning Framework
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Parallelization Decisions at Runtime

Thread spawning

End of a parallel execution
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New execution model facilitates dynamic tuning
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Evaluating Performance Impact

Runti nalysis

Performance
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Simple metric:
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cost of speculative failure

Comprehensive evaluation:
sequential performance prediction
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Sequential Performance Prediction
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Cache Behavior: Scenario #1

TLS SEQ Predicted
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Cache Behavior: Scenario #2
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Tune the performance

Runtime Analysis

Performance
Profile Table

[ Tuning Policy ]

Exhaustive search x
Prioritized search %
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How to prioritize the search

Search order: Performance summary metric:
 Inside-Out J Speedup or not?
J Compiler suggestion d Improvement in cycles
 Outside-In
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Evaluation Infrastructure

Benchmarks
e SPEC2000 written in C, -O3 optimization

Underlying architecture @ @ @ @
e 4-core, chip-multiprocessor (CMP)

e speculation supported by coherence CII|C|]C||C
S | | |
SimUIatOr Interconnect
: ]
e Superscalar with detailed memory model C
e simulates communication latency

e models bandwidth and contention

» Detailed, cycle-accurate simulation
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Comparing Tuning Policies

Speedup wrt. SEQ

m Simple B Quantitative  Quantitative+StaticHint
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Parallel Code Overhead
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Profile-Based vs. Dynamic

Speedup wrt. SEQ

M ProfileBased B Quant+StaticHint

Dynamic outperformed static by =10% (1.37x/1.25x)

Potentially go up to =15% (1.46x/1.27x)

Z% UNIVERSITY OF MINNESoTA



Related works: Region Selection
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Conclusions

Deciding how to extract speculative threads at runtime
JQuantitatively summarize performance profile
(JCompiler hints avoid suboptimal decisions

Compiler and hardware work together.
J 37% speedup over sequential execution
J =10% speedup over profile-based decisions

Configurable HPMs enable efficient
dynamic optimizations

Dynamic performance tuning can improve TLS efficiency
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