
Dynamic Performance Tuning
for Speculative Threads

Yangchun Luo, Venkatesan Packirisamy,

Nikhil Mungre†, Ankit Tarkas†,

Wei-Chung Hsu, and Antonia Zhai

Dept. of Computer Science and Engineering
†Dept. of Electronic Computer Engineering

University of Minnesota – Twin Cities

Motivation

Multicore processors brought forth large potentials of computing power

Exploiting these potentials demands thread-level parallelism

2

Intel Core i7 die photo

Exploiting Thread-Level Parallelism

Potentially more parallelism with speculation

3

Sequential

Store *p

Load *q

Store *p

T
i
m
e

p != q

Thread-Level Speculation (TLS)

Traditional Parallelization

Load *q

p != q ??

Store 88

Load 20

Parallel execution

Store 88

Load 88

Speculation

Failure

T
i
m
e

T
i
m
e

Load 88

Compiler gives up

p == q

But Unpredictable

Addressing Unpredictability

State-of-the-art approach:
 Profiling-directed optimization
 Compiler analysis

Source code
Profiling run

Profiling
info

Region selection

Parallel code
generation

Machine code

A typical compilation framework

4

Speculative code
optimization

Problem #1

0
1

2
3

3

T
i
m
e signal

allow

commit

wait

spawning
thread

inter-thread
synchronization

speculation
failure

……
load

imbalance

5

4

Hard to model TLS overhead statically, even with profiling

Problem #2

6

Profiling
Behavior

Training
Input

Actual
Input

Actual
Behavior

Profile-based decision may not be appropriate for actual input

Problem #3

7

Timephase1 phase2

M
et

ri
c

phase3

Behavior of the same code changes over time

Problem #4

8

Load *p=0x88

Prefetching

Extra misses

Pollution

Load 0x22 miss

Load 0x22 hit

Load 0x22 Load 0x22miss miss

Sequential Parallel

P P P

How important are cache impacts?

L1$ L1$ L1$

P
L1$

Load *p’=0x88

P
L1$

P
L1$

P
L1$

Load *p=0x80

Load *p’=0x08

0

0.2

0.4

0.6

0.8

1

SEQ TLS-4core

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Cache

Squash

Other

Impact on Cache Performance

9

60%

load *p=0x88

Cache: p == p’
Prefetched (+)

load *p’=0x88

Cache impact is difficult to model statically

A major loop from benchmark art (scanner.c:594)

2.5X

Our proposal

Proposed Performance Tuning Framework

Compiler Analysis Runtime Analysis

10

Source code

Profiling
info

Region selection

Parallel code
generation

Machine code

Speculative code
optimization

Accurate
Timing &

Cache
Impacts

Adaptations for
inputs and

phase changes

Performance
Evaluation

Tuning Policy
Compiler
Annotation

Runtime
Information

Dynamic Execution

Performance
Profile Table

Parallelization Decisions at Runtime

11

…

Evaluate
performance

Thread spawning End of a parallel execution

spawn

parallelize

spawn
spawn

serialize

…

spawn

Parallel execution Sequential execution

Parallel Execution

New execution model facilitates dynamic tuning

Performance Profile Table

Evaluating Performance Impact

12

Runtime Analysis

Simple metric:
cost of speculative failure

Comprehensive evaluation:
sequential performance prediction

0

0.2

0.4

0.6

0.8

1

SEQ TLS-4core

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Cache

Squash

Other

Performance
Evaluation

Tuning Policy

Runtime
Information

Dynamic Execution

Performance
Profile Table

Sequential Performance Prediction

13

PredictP P

Programmable Cycle
Classifier

Information
from ROB

Hardware Counters

iFetch

CacheBusy

ExeStall

Speculative
Parallel

Predicted
sequential

Busy

iFetch

ExeStall

Cache

TLS
overhead

Performance
Impact

Cache Behavior: Scenario #1

14

TLS

Count the miss in squashed execution

load p

(unmodified)
miss

load p hit

Predicted

load p hit

SEQ

load p miss

T0

T0

T0 T0

Squash

Cache Behavior: Scenario #2

15

TLS

load p miss

load p miss

Predicted

load p miss*2

SEQ

load p miss

store p

invalidate p

store p

Not count a miss if
 tag matched
 invalid status

store p

T0 T0 T0

T0

Tune the performance

16

Exhaustive search

Prioritized search

Runtime Analysis

Performance
Evaluation

Tuning Policy

Runtime
Information

Dynamic Execution

Performance
Profile Table

How to prioritize the search

17

Search order:
 Inside-Out
 Compiler suggestion
 Outside-In

Performance summary metric:
 Speedup or not?
 Improvement in cycles

Search order

P
e

rf
o

rm
an

ce

Su
m

m
ar

y
m

e
tr

ic

Sp
ee

d
u

p
o

r
n

o
t?

Inside-Out Compiler
suggestion

Im
p

ro
ve

.
in

 c
yc

le
s

Quantitative
+StaticHint

Quantitative

Simple

Suboptimal

Evaluation Infrastructure

Benchmarks
 SPEC2000 written in C, -O3 optimization

Underlying architecture
 4-core, chip-multiprocessor (CMP)

 speculation supported by coherence

Simulator
 Superscalar with detailed memory model

 simulates communication latency

 models bandwidth and contention

Detailed, cycle-accurate simulation

C

C

P

C

P

Interconnect

C

P

C

P

18

Comparing Tuning Policies

19

0

0.5

1

1.5

2

2.5

3

Sp
ee

d
u

p
 w

rt
. S

EQ

Simple Quantitative Quantitative+StaticHint

1.17x

1.23x

1.37x

Parallel Code Overhead

Profile-Based vs. Dynamic

20

0

0.5

1

1.5

2

2.5

3

Sp
ee

d
u

p
 w

rt
. S

EQ

ProfileBased Quant+StaticHint

ProfileBased/ProfileBasedSEQ (Quant+StaticHint)/dynamicSEQ

Dynamic outperformed static by ≈10% (1.37x/1.25x)

1.25x

Potentially go up to ≈15% (1.46x/1.27x)

1.27x

1.46x

Related works: Region Selection

Runtime Loop

Detection

[Tubella HPCA’98]

[Marcuello ICS’98]

Compiler Heuristics

[Vijaykumar Micro’98]

21

Statically Dynamically

Saving Power

from Useless Re-

spawning

[Renau ICS’05]

Simple Profiling Pass

[Liu PPoPP’06] (POSH)

Extensive Profiling

[Wang LCPC’05]

Balanced Min-Cut

[Johnson PLDI’04]

Profile-Based Search

[Johnson PPoPP’07]

Lack of adaptability
Lack of high-level
information

Dynamic Performance Tuning
[Luo ISCA’09] (this work)

Conclusions

Deciding how to extract speculative threads at runtime
Quantitatively summarize performance profile
Compiler hints avoid suboptimal decisions

Compiler and hardware work together.
 37% speedup over sequential execution
 ≈10% speedup over profile-based decisions

22

Dynamic performance tuning can improve TLS efficiency

Configurable HPMs enable efficient

dynamic optimizations

