Dynamic Performance Tuning
for Speculative Threads

Yangchun LugVenkatesan Packirisamy,
Nikhil MungreAnkit Tarkéas
WetChung Hsu, and Antonia Zhal
Dept. of Computer Science and Engineering

"Dept. of Electronic Computer Engineering
University of Minnesotg Twin Cities

UNIVERSITY OF MINNESOTA

Motivation

Multicore processors brought forth large potentials of computing power

Memory Controller

Shared L3 Cache - |

Time

A

Exploiting Thread.evel Parallelism

Sequential

Time

Store *p
Load *q

Traditional Parallelization

Load *q
Store*p

SRENIralll Compiler gives up

Thread -Level Speculation (TLS)

Time

p!=q
Load20
Store88

Parallel execution

©
gers
fpy’ Loadss
tore88

Speculation J| Loadss
Failure

Potentially more parallelism with speculatio

RSITY OF MINNESOTA

Addressing Unpredictabllity

Stateof-the-art approach:
C Profilingdirected optimization
C Compiler analysis

A typical compilation framework

Source code J
Profiling run ‘1’

Region selection

e&’?’& J

<<e
Parallel code
generation

v

Speculative code
optimization

\

(Machine codeJ

Profiling
info

A%\ UNIVERSITY OF MINNESOTA

Problem #1

spawning
thread

inter-thread
synchronization

speculation
failure

Time

v

X"
load

imbalance

Problem #2

Training Actual
Input Input

Profiling Actual

Behavior Behavior

Profilebased decision may not be appropriate for actual inj

Z% UNIVERSITY OF MINNESoTA

Problem #3

i

Metric

]

N

phasel phase2 phase3’ :rime

Behavior of the same code changes over ti

Problem #4

Extra misses
Sequential Parallel

L1$ L1$ L1$

" Load OX28 miss Load Ox§[miss

Load OX28 miss

Load Ox2 hit

Prefetching Pollution

I th ILoad*

How important are cache impacts”
Z% UNIVERSITY OF MINNESoTA

Impact on Cache Performance

A major loop from benchmark art (scanner.c:594)

Normalized Execution Time

1 -

m Cache

B Squash
m Other

o
o

0.6 -

0.4

o
[N

SEQO TL&Acore

Iload *p=0x88

]:I o a d Ox88p

/| 1 OKSY

Prefetched {)

Cache impact is difficult to model staticall

(@)
[

LJ Ir

Our proposal

Proposed Performance Tuning Framework
Accurate

Timing & _ _
o-104-0 | Runtime_Apalysis
Impacts

Compiler Analysis

Ve

Source code J

Performance '

Y Evaluation Adaptations for
Runtime AN inputs and
Region selecﬂﬂ @ nformatio g phase changes

para||e| code Dynamlc Executio

Profiling _ q
v Profile Table
Speculative code
optimization J

/
v 7
(Machine code — o —
Compiler
Annotation

10 Z% UNIVERSITY OF MINNESoTA

Parallelization Decisions at Runtime

Thread spawning | End of a parallel execution
9 > Performance Profile Table
s . I
lleli Y
parallelize i ?I I _[
Tarx =P) L LT
Spawn i Spawn
=1 ™"
 spawn 1 | Parallel Execution
|
i ! EvaluateJ-
Parallel execution | Sequential executidn performance

New execution model facilitates dynamic tuni

A%\ UNIVERSITY OF MINNESOTA

Evaluating Performance Impact

Runtime_Analysis

Performance
Runtim Evaluation 1.
Informatio c m Cache
F 08 L h
Dynamic Execution 5 = Other
Performance 3 06
Profile Table Ch
i
e
2 04-
©
. . S
[Tuning Pollcy] 5 0.2
S o.
0 .
Simple metric: SEQ TLSAcore

cost of speculative failure

Comprehensive evaluation:
sequential performance prediction

A%\ UNIVERSITY OF MINNESOTA

Sequential Performance Prediction

Hardware Counters

Programmable&ycle
Classifier

Information
from ROB

Performance
Impact

TLS
overhead ExeStall

iIFetch .

Busy

Speculative Predicted
Parallel sequential

A%\ UNIVERSITY OF MINNESOTA

Cache Behavior: Scenario #1

TLS SEQ Predicted
TO TO TO

(unmolfiﬁg dF; Mmiss load @ miss load p hitx
A

T0 >U

load pR hit

the miss in squashed executic

Cache Behavior: Scenario #2

TLS SEQ Predicted l
TO0 T0 T0
load pfj MISS — load p] MISS load pj MISS*2
store store store
invalidate Pro > U I
load p MmISS

a miss if

X tag matched
X Invalid status

Tune the performance

Runtime Analysis

‘ Performance
\ Evaluation

Informatio ‘f'

Dynamic Execution

Performance
Profile Table ’

[Tuning Policy]

Exhaustive searctx
Prioritized search %

I 5. Us vesiry or Miswsors I

1

7

How to prioritize the search

Search order: Performance summary mettric:
C InsideOut C Speedup or not?

C Compiler suggestion C Improvement in cycles

C Outsideln

@0(8 r.f;Ne
A Suboptlmal

w
7’

InsideOut Compiler
suggestion

Improve.
In cycles

Summary metric

Performance
Speedup
or not?

Search order

Z% UNIVERSITY OF MINNESoTA

Evaluation Infrastructure

Benchmarks
1 SPEC2000 written in @3 optimization

Underlying architecture @
1 4-core, chipmultiprocesso(CMP) @ @ @

1 speculation supported by coherence lC LI C € ||C
: - | | |
SImU|atOI’ Interclonnect
1 Superscalar wit detailed memory model C
1 simulates communication latency

7 models bandwidth and contention

U Detailed, cycleaccuratesimulation

A%\ UNIVERSITY OF MINNESOTA

