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Motivation

Multicore processors brought forth large potentials of computing power

Exploiting these potentials demands thread-level parallelism 
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Exploiting Thread-Level Parallelism

Potentially more parallelism with speculation
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Addressing Unpredictability

State-of-the-art approach:
 Profiling-directed optimization
 Compiler analysis

Source code
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A typical compilation framework
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Problem #1
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Hard to model TLS overhead statically, even with profiling



Problem #2
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Problem #3
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Problem #4
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60%



load *p=0x88

Cache: p == p’
Prefetched (+)

load *p’=0x88

Cache impact is difficult to model statically

A major loop from benchmark art (scanner.c:594)
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Our proposal

Proposed Performance Tuning Framework

Compiler Analysis Runtime Analysis
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Parallelization Decisions at Runtime
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Performance Profile Table



Evaluating Performance Impact
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Runtime Analysis

Simple metric:
cost of speculative failure

Comprehensive evaluation: 
sequential performance prediction
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Sequential Performance Prediction
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Cache Behavior: Scenario #1
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Cache Behavior: Scenario #2
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Tune the performance
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How to prioritize the search
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Search order:
 Inside-Out
 Compiler suggestion
 Outside-In

Performance summary metric:
 Speedup or not?
 Improvement in cycles
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Evaluation Infrastructure

Benchmarks
 SPEC2000 written in C, -O3 optimization

Underlying architecture
 4-core, chip-multiprocessor (CMP)

 speculation supported by coherence

Simulator
 Superscalar with detailed memory model

 simulates communication latency

 models bandwidth and contention

Detailed, cycle-accurate simulation
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Comparing Tuning Policies
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Profile-Based vs. Dynamic
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Related works: Region Selection

Runtime Loop 

Detection

[Tubella HPCA’98]

[Marcuello ICS’98]

Compiler Heuristics

[Vijaykumar Micro’98]
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Statically Dynamically

Saving Power 

from Useless Re-

spawning

[Renau ICS’05]

Simple Profiling Pass

[Liu PPoPP’06] (POSH)

Extensive Profiling

[Wang LCPC’05]

Balanced Min-Cut

[Johnson PLDI’04]

Profile-Based Search

[Johnson PPoPP’07]

Lack of adaptability
Lack of high-level
information

Dynamic Performance Tuning
[Luo ISCA’09] (this work)



Conclusions

Deciding how to extract speculative threads at runtime
Quantitatively summarize performance profile
Compiler hints avoid suboptimal decisions

Compiler and hardware work together.
 37% speedup over sequential execution
 ≈10% speedup over profile-based decisions
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Dynamic performance tuning can improve TLS efficiency

Configurable HPMs enable efficient 

dynamic optimizations


