
Dynamic Performance Tuning
for Speculative Threads

Yangchun Luo, Venkatesan Packirisamy,

Nikhil MungreÀ, Ankit TarkasÀ,

Wei-Chung Hsu, and Antonia Zhai

Dept. of Computer Science and Engineering
ÀDept. of Electronic Computer Engineering

University of Minnesota ςTwin Cities

Motivation

Multicore processors brought forth large potentials of computing power

Exploiting these potentials demands thread-level parallelism

2

Intel Core i7 die photo

Exploiting Thread-Level Parallelism

Potentially more parallelism with speculation

3

UV

Sequential

Store *p

Load *q

Store *p

T
im

e "

p != q

Thread -Level Speculation (TLS)

Traditional Parallelization

Load *q

p != q ??

Store 88

Load 20

Parallel execution

Store 88

Load 88

Speculation

Failure

T
im

e

T
im

e

Load 88

Compiler gives up

p == q

But Unpredictable

Addressing Unpredictability

State-of-the-art approach:
ÇProfiling-directed optimization
ÇCompiler analysis

Source code
Profiling run

Profiling
info

Region selection

Parallel code
generation

Machine code

A typical compilation framework

4

Speculative code
optimization

Problem #1

V
V

0
1

2
3

3

T
im

e sig nal

allow

commit

wait

U

spawning
thread

inter-thread
synchronization

speculation
failure

ΧΧ
load

imbalance

5

4

Hard to model TLS overhead statically, even with profiling

Problem #2

6

Profiling
Behavior

Training
Input

Actual
Input

Actual
Behavior

Profile-based decision may not be appropriate for actual input

Problem #3

7

Timephase1 phase2

M
e
tr

ic

phase3

Behavior of the same code changes over time

Problem #4

8

UU
Load *p=0x88

Prefetching

Extra misses

Pollution

"

Load 0x22 miss

Load 0x22 hit

Load 0x22 Load 0x22miss miss

Sequential Parallel

P P P

How important are cache impacts?

L1$ L1$ L1$

P
L1$

Load *pô=0x88

P
L1$

P
L1$

P
L1$

Load *p=0x80

Load *pô=0x08

0

0.2

0.4

0.6

0.8

1

SEQ TLS-4core

N
o
rm

a
liz

e
d

 E
xe

cu
tio

n
 T

im
e

Cache

Squash

Other

Impact on Cache Performance

9

60%

U

load *p=0x88

/ŀŎƘŜΥ Ǉ ҐҐ ǇΩ
Prefetched (+)

load *pô=0x88

Cache impact is difficult to model statically

A major loop from benchmark art (scanner.c:594)

2.5X

Our proposal

Proposed Performance Tuning Framework

Compiler Analysis Runtime Analysis

10

Source code

Profiling
info

Region selection

Parallel code
generation

Machine code

Speculative code
optimization

Accurate
Timing &

Cache
Impacts

Adaptations for
inputs and

phase changes

Performance
Evaluation

Tuning Policy
Compiler
Annotation

Runtime
Information

Dynamic Execution

Performance
Profile Table

Parallelization Decisions at Runtime

11

Χ

Evaluate
performance

Thread spawning End of a parallel execution

spawn

parallelize

spawn
spawn

serialize

Χ

spawn

Parallel execution Sequential execution

Parallel Execution

New execution model facilitates dynamic tuning

U

U

Performance Profile Table

Evaluating Performance Impact

12

Runtime Analysis

Simple metric:
cost of speculative failure

Comprehensive evaluation:
sequential performance prediction

0

0.2

0.4

0.6

0.8

1

SEQ TLS-4core

N
o

rm
a

liz
e

d
 E

xe
cu

ti
o

n
 T

im
e Cache

Squash

Other

Performance
Evaluation

Tuning Policy

Runtime
Information

Dynamic Execution

Performance
Profile Table

Sequential Performance Prediction

13

PredictP P

Programmable Cycle
Classifier

Information
from ROB

Hardware Counters

iFetch

CacheBusy

ExeStall

Speculative
Parallel

Predicted
sequential

Busy

iFetch

ExeStall

Cache

TLS
overhead

Performance
Impact

Cache Behavior: Scenario #1

14

TLS

Countthe miss in squashed execution

U

load p

(unmodified)
miss

load p hit

Predicted

load p hit

SEQ

load p miss

T0

T0

T0 T0

Squash

Cache Behavior: Scenario #2

15

TLS

U

load p miss

load p miss

Predicted

load p miss*2

SEQ

load p miss

store p

invalidate p

store p

Not count a miss if
× tag matched
× invalid status

store p

T0 T0 T0

T0

Tune the performance

16

Exhaustive search

Prioritized search

Runtime Analysis

Performance
Evaluation

Tuning Policy

Runtime
Information

Dynamic Execution

Performance
Profile Table

How to prioritize the search

17

Search order:
Ç Inside-Out
ÇCompiler suggestion
ÇOutside-In

Performance summary metric:
ÇSpeedup or not?
Ç Improvement in cycles

Search order

P
e

rf
o

rm
a

n
ce

S

u
m

m
a

ry
 m

e
tr

ic

S
p

e
e

d
u

p
o

r
n

o
t?

Inside-Out Compiler
suggestion

Im
p

ro
ve

.
in

 c
yc

le
s

Quantitative
+StaticHint

Quantitative

Simple

Suboptimal

Evaluation Infrastructure

Benchmarks
¶ SPEC2000 written in C, -O3 optimization

Underlying architecture
¶ 4-core, chip-multiprocessor(CMP)

¶ speculation supported by coherence

Simulator
¶ Superscalar with detailed memory model

¶ simulates communication latency

¶ models bandwidth and contention

üDetailed, cycle-accurate simulation

C

C

P

C

P

Interconnect

C

P

C

P

18

