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Motivation

Multicore processors brought forth large potentials of computing power

Exploiting these potentials demands thread-level parallelism 
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Exploiting Thread-Level Parallelism

Potentially more parallelism with speculation

3

UV

Sequential

Store *p

Load *q

Store *p

T
im

e "

p != q

Thread -Level Speculation (TLS)

Traditional Parallelization

Load *q

p != q ??

Store 88

Load 20

Parallel execution

Store 88

Load 88

Speculation 

Failure

T
im

e

T
im

e

Load 88

Compiler gives up

p == q

But Unpredictable



Addressing Unpredictability

State-of-the-art approach:
ÇProfiling-directed optimization
ÇCompiler analysis

Source code
Profiling run

Profiling 
info

Region selection

Parallel code 
generation

Machine code

A typical compilation framework
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Problem #1
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Hard to model TLS overhead statically, even with profiling



Problem #2
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Problem #3
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Problem #4
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Our proposal

Proposed Performance Tuning Framework

Compiler Analysis Runtime Analysis
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Parallelization Decisions at Runtime
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Evaluating Performance Impact
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Runtime Analysis

Simple metric:
cost of speculative failure

Comprehensive evaluation: 
sequential performance prediction
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Sequential Performance Prediction
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Cache Behavior: Scenario #1
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Cache Behavior: Scenario #2
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Tune the performance
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How to prioritize the search
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Search order:
Ç Inside-Out
ÇCompiler suggestion
ÇOutside-In

Performance summary metric:
ÇSpeedup or not?
Ç Improvement in cycles

Search order
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Evaluation Infrastructure

Benchmarks
¶ SPEC2000 written in C, -O3 optimization

Underlying architecture
¶ 4-core, chip-multiprocessor(CMP)

¶ speculation supported by coherence

Simulator
¶ Superscalar with detailed memory model

¶ simulates communication latency

¶ models bandwidth and contention

üDetailed, cycle-accurate simulation
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