Dynamic Performance Tuning
for Speculative Threads

Yangchun Luo, Venkatesan Packirisamy,
Nikhil Mungre®, Ankit Tarkas",
Wei-Chung Hsu, and Antonia Zhai

Dept. of Computer Science and Engineering
"Dept. of Electronic Computer Engineering
University of Minnesota — Twin Cities

UNIVERSITY OF MINNESOTA

Motivation

Multicore processors brought forth large potentials of computing power

Memory Controller

Time

A

Exploiting Thread-Level Parallelism

Sequential

Time

Store *p
Load *q

Traditional Parallelization

Time

Thread-Level Speculation (TLS)

Load *q
Store *p

pl=q?? Compiler gives up

p!=q
Load 20
Store 88

Parallel execution Speculation

Failure

e
gers
V Load 88
tore 88

X
Load 88

Potentially more parallelism with speculation

But Unpredictable

RSITY OF MINNESOTA

Addressing Unpredictability

State-of-the-art approach:
 Profiling-directed optimization
J Compiler analysis

A typical compilation framework

Source code J
Profiling run ‘1’

Region selection

N
((ee&)ac \
Parallel code

generation

v

Speculative code
optimization

\

(Machine code J

Profiling >
info

A%\ UNIVERSITY OF MINNESOTA

Problem #1

spawning
thread

inter-thread
synchronization

speculation
failure

Time

{ commit TEREX

load
imbalance

Problem #2

Training Actual
Input Input

Profiling Actual

Behavior Behavior

o

Profile-based decision may not be appropriate for actual input

Z% UNIVERSITY OF MINNESoTA

Problem #3

i

Metric

]

phasel phase2 phase3 Time

Behavior of the same code changes over time

A 5. Usveksiry or Misesors I

Problem #4

Extra misses

Sequential Parallel

. /
Load 0x22 f miss ° Load 0X22 f miss [gad OXZ]:miss

Load 0x22 § hit

Prefetching Pollution

L1$ L1S$ L1$ L1S
ILoad pFOX88 I I Load *p§0x80

]:Load* =0x88]: Load *p{=0x08
How important are cache impacts?

Z% UNIVERSITY OF MINNESoTA

Impact on Cache Performance

A major loop from benchmark art (scanner.c:594)

1 -
Iload *p=0x88
Iload *p’=0x88

Cache: p==p’
Prefetched (+)

W Cache

M Squash
M Other

o
o0

0.6 -

o
>

Normalized Execution Time

o
N

SEQ TLS-4core

Cache impact is difficult to model statically

EE—— e, usrversiry oF Miswesora [

Our proposal

Proposed Performance Tuning Framework
Accurate
Timing &

Compiler Analysis BR&NS T Runtime _Analysis

Ve

Performance

Impacts
\ —r

Source code J

' Adaptations for

Evaluation
R | Runtime AN inputs and
eglon selectio @ nformatlon \/ phase changes

ParaIIeI code Dynamlc Execution

Profiling g q
info generation Performance
v Profile TabIe

Speculative code
optimization

/
v 7
{ Machine code — - -
Compiler
Annotation

10 Z% UNIVERSITY OF MINNESoTA

Parallelization Decisions at Runtime

Thread spawning

End of a parallel execution

?

J

\4

1

>

Performance Profile Table

[parallelize]

spawn
spawn i T >
(NN

|
? I serialize |

spawn I s

spawn i

Parallel execution | Sequential executionl

1

| TT1

Parallel Execution

Evaluate J‘

performance

New execution model facilitates dynamic tuning

Z% UNIVERSITY OF MINNESoTA

Evaluating Performance Impact

Runti nalysis

Performance

Runtime Evaluation

Information

Dynamic Execution

Performance
Profile Table

Normalized Execution Time

[Tuning Policy]

Simple metric:

0.8 -

0.6 -

0.4 -

0.2 -

SEQ

H Cache

TLS-4core

cost of speculative failure

Comprehensive evaluation:
sequential performance prediction

A%\ UNIVERSITY OF MINNESOTA

Sequential Performance Prediction

Hardware Counters

Performance
Impact

TLS
overhead ExeStall

Programmable Cycle

Classifier
iFetch .
Information
from ROB
- — Busy

N .- Speculative Predicted
-7 Parallel sequential

A%\ UNIVERSITY OF MINNESOTA

Cache Behavior: Scenario #1

TLS SEQ Predicted

TO TO TO

load p i load i load i
(unmodified) MIiss Pl miss p rlt

TP X

loadp § hit

the miss in squashed execution

Cache Behavior: Scenario #2

TLS SEQ Predicted
TO TO TO
loadp | MISS — loadp | MISS loadp | MISS*2 x
store p store p store p
invalidate pTO >x
load p MIsS

a miss if

¢ tag matched
+ invalid status

I 5. Usveksiry or Mosesors [

Tune the performance

Runtime Analysis

Performance
Profile Table

[Tuning Policy]

Exhaustive search x
Prioritized search %

I 5. Usveksiry or Mosesors [

How to prioritize the search

Search order: Performance summary metric:
 Inside-Out J Speedup or not?
J Compiler suggestion d Improvement in cycles
 Outside-In
wo(eecf;ﬂe
4 Suboptimal pe® v
Q w 7
e 22 Quz ve
5 <o g Quantitative
@ @ 20
O E E c
c > 7’
E o Pad
£E 3| e
23 § é Simple @
a5l
Inside-Out Compiler
suggestion

Search order

Z% UNIVERSITY OF MINNESoTA

Evaluation Infrastructure

Benchmarks
e SPEC2000 written in C, -O3 optimization

Underlying architecture @ @ @ @
e 4-core, chip-multiprocessor (CMP)

e speculation supported by coherence CII|C|]C||C
S | | |
SimUIatOr Interconnect
:]
e Superscalar with detailed memory model C
e simulates communication latency

e models bandwidth and contention

» Detailed, cycle-accurate simulation

A%\ UNIVERSITY OF MINNESOTA

Comparing Tuning Policies

Speedup wrt. SEQ

m Simple B Quantitative Quantitative+StaticHint

1

Parallel Code Overhead

Z% UNIVERSITY OF MINNESoTA

Profile-Based vs. Dynamic

Speedup wrt. SEQ

M ProfileBased B Quant+StaticHint

Dynamic outperformed static by =10% (1.37x/1.25x)

Potentially go up to =15% (1.46x/1.27x)

Z% UNIVERSITY OF MINNESoTA

Related works: Region Selection

Statically Dynamically

TN

Compiler Heuristics

Runtime Loo
[Vijaykumar Micro’98] unt P

Detection
Balanced Min-Cut 7 [Tubella HPCAO8]
L_[Johnson PLDI'04] \[Marcuello ICS'98]
~
Simple Profiling Pass . AN
_ , Saving Power
~JLiu PPoPP’06] (POSH) from Useless Re-
_ — ~ spawning
Extensive Profiling [Renau ICS'05]
~JWang LCPC’05]
~

Profile-Based Search
JJohnson PPoPP’07]

[Luo ISCA’09] (this work)

Conclusions

Deciding how to extract speculative threads at runtime
JQuantitatively summarize performance profile
(JCompiler hints avoid suboptimal decisions

Compiler and hardware work together.
J 37% speedup over sequential execution
J =10% speedup over profile-based decisions

Configurable HPMs enable efficient
dynamic optimizations

Dynamic performance tuning can improve TLS efficiency

A%\ UNIVERSITY OF MINNESOTA

