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Motivation

Multicore processors brought forth large potentials of computing power
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Addressing Unpredictabllity

Stateof-the-art approach:
C Profilingdirected optimization
C Compiler analysis

A typical compilation framework
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Problem #1
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Problem #2
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Profilebased decision may not be appropriate for actual inj
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Problem #3
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Problem #4
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Impact on Cache Performance

A major loop from benchmark art (scanner.c:594)
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Our proposal

Proposed Performance Tuning Framework
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Parallelization Decisions at Runtime

Thread spawning | End of a parallel execution
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Evaluating Performance Impact
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Comprehensive evaluation:
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Sequential Performance Prediction
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Cache Behavior: Scenario #1
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Cache Behavior: Scenario #2
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Tune the performance
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How to prioritize the search

Search order: Performance summary mettric:
C InsideOut C Speedup or not?
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Evaluation Infrastructure

Benchmarks
1 SPEC2000 written in @3 optimization

Underlying architecture @
1 4-core, chipmultiprocesso(CMP) @ @ @

1 speculation supported by coherence lC LI C € ||C
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1 Superscalar wit detailed memory model C
1 simulates communication latency
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U Detailed, cycleaccuratesimulation
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