

A Memory System Design Framework: Creating Smart Memories

Amin Firoozshahian, Alex Solomatnikov

Hicamp Systems Inc.

Ofer Shacham, Zain Asgar, Stephen Richardson, Christos Kozyrakis, Mark Horowitz

Stanford University

An Era of Chip-Multiprocessors...

- Single-thread performance scaling has stopped
- More processor cores on the same die
- Claim:
 - Scale performance
 - Keep design complexity constant

Intel Nehalem

Sun Rock

IBM Cell

Looking a Little More Closely

Sun Rock

Reality...

- Replicated cores
- Incredibly complicated memory system
 - Large amounts of logic
- Innovation is in the memory system
 - Transactions, streaming, fast synchronization, security, etc.
- Never exactly the same
- Where all the bugs are!

ISA for Memory Systems

- Can we regularize the memory system hardware?
- <u>"Program"</u> it rather than <u>"Design"</u> it?

Benefits:

- Reduce design time
- Patch errors
- Run-time tuning
- How can we do this?

Shared Memory System

Resources:

- Local memory
 - Data, state bits
- Interconnect
- Controllers

Operations:

- Probing state bits
- Track requests
- Communication
- Data movements (spill / refill)

THE PARTY OF THE P

Streaming Memory System

Resources:

- Local memory
- Interconnect
- Controllers

Operations:

- Communication
- Data movements
- Track outstanding transfers

Transactional Memory System

Resources

- Local memory
 - More state bits
- Interconnect
- Controllers

Operations

- Data movements
- State checks / updates
- Communication

Commonalities

Same resources and operations

Different in:

- How the operations are sequenced
- Interpretation of state bits

We need:

- Flexible local storage and interconnect
- Programmable controllers

Local Memories

- Programmable memory mat
 - Data array
 - State bits
 - PLA logic
 - Comparator
- Accessed by
 - Address, Opcode
- Returns
 - data, state, compare result

Programmable Controllers

Use an off-the-shelf processor?

FLASH, Typhoon, etc.

Too slow

All the way to the L1 cache interface

Our approach:

- Micro-coded engines (functional units)
- Each class of operations in a separate engine

Programming

A set of subroutines

- A set of basic operations
- Executed in a functional unit

Each one calls next

Microarchitecture

- A small pipeline
- Configuration ("program") memories
 - Horizontal micro-code
 - Decide what to do
 - Decide how to proceed

Organization

Read Miss Example

Programming Complexity

Cache Coherence

- Message types received by controller: 6
 - From processor: Cache miss, Upgrade miss, Prefetch
 - From network: Coherence request, Refill, Upgrade
- Subroutine types in Tracking unit: 11

Streaming

- Message types: 5
 - Direct access, Gather, Scatter, Gather reply, Scatter ack.
- Subroutine types in Tracking unit: 9

Smart Memories

- 8-core CMP system
- ST 90nm-GP CMOS technology

Tile 3

Tile 2

Quad

Tile0

Tile 1

Configurable

Protocol Controller

■ 5.5 ns cycle time (181MHz)

Memory Controller

Quad

Memory Controller

Quad 4 Quad

Quad

Quad

Memory Controller

Quad + Quad

Quad

Quad

System

Controller

■ 2.9M gates, 55M transistors

Status

- ■System bring-up......

 ✓
- ■System configuration.....✓
- ■JTAG tests.....
- **■**Coherent shared memory tests.. ✓
- ■Transactional tests (TCC)......
- ■Streaming tests......

- More testing in progress
- Planning for a 32-processor system

Evaluation

- Comparison with a hardwired controller
 - But which one? You would claim I am cheating!
- Compare with an "ideal" controller
 - Assume controller actions occur in zero time
 - Account for external actions
 - Data read/write
 - Message send/receive

Gives an upper bound

Average Read Latency

Average Read Latency - 32 processor system

Execution Time

■Total average overhead: 15%

Conclusion

- Strong similarity between memory systems
 - Common resources and operations

- A framework for memory systems design
 - Generate specific "instances"

- Modest performance overhead
 - Compared to ideal systems