
Performance Forecasting:
Finding bottlenecks before they happen

Ali Saidi†◊, Nathan Binkert‡, Steve Reinhardt§†, Trevor Mudge†

† – University of Michigan

‡ – HP Labs

§ – AMD Research

◊ – ARM R&D

1

June 23, 2009

Performance Analysis Challenge
2

  Today’s workloads & systems are complex
 Many layers of HW (disk, network), SW (app, OS)

  How to evaluate systems in design stage?
 Where are the bottlenecks?

  Conventional tools inadequate

Application
Kernel
•  Protocol
•  Driver

Hardware
•  NIC
•  Disk

Network
Hardware
•  NIC
•  Disk

Kernel
•  Protocol
•  Driver

Application

Machine 1 Machine 2

Application
Kernel
•  Protocol
•  Driver

Hardware
•  NIC
•  Disk

Network
Hardware
•  NIC
•  Disk

Kernel
•  Protocol
•  Driver

Application

Machine 1 Machine 2

Solution: Global Critical Path
3

  Directly identifies true bottlenecks
 Accounts for overlapped latencies

  Used successfully in past in isolated domains
 Fields et al. out-of-order CPU
 Barford and Crovella TCP
 Yang and Miller MPI

Building a Global Critical Path
4

  Requires global event dependence graph

Challenge:
typically requires detailed knowledge

across many domains!

Solution:
automatically extract dependence graph

from interacting state machines

End Result
5

  Our simulation technique directly identifies:
 The current bottleneck
 How much improvement until next bottleneck
 What the next bottleneck will be

  Conventional simulation approach:
 Hypothesize bottleneck
 Prototype solution
 Simulate solution
 Test hypothesis, repeat if incorrect

MINUTES

HOURS / DAYS

Constructing a Dependence Graph
6

  Systematically map state machines into a global
dependence graph
 Most HW is already specified as a state machines
 Extract implicit state machines from SW

App Protocol Driver NIC Network NIC Driver Protocol App
Machine 1 Machine 2

Explicit State Machine Conversion

Edges

Nodes

Nodes

Edges

7

State Machine Dependence Graph

dependence edge weight =
time spent in state

Explicit State Machine Conversion
8

A

B D

C

↘ t1

 ← t2

→ t3

↙ t4

Start B￫D A￫B D￫B B￫C t1-t0 t2-t1 t3-t2 t4-t3

What about software?
9

F() {	
	int a;	
	…	
	H();	
	…	
	…	
	…	
	S();	

}	

H() {	
	int z;	
	…	
	…	
	ret L();	

}	

L() {	
	int z;	
	…	
	…	
	…	
	…	
	…	

…	
}	

Start H￫L F￫H L￫F F￫S t1-t0 t2-t1 t3-t2 t4-t3

 t1 t2

 t3

t4

State Machine Interactions
10

  Link up piece of dependence graph through
these interactions

  Queues are interaction points
 Without them back pressure can’t be modeled
 Abstract entities

  Annotated in models and code
 Developed iteratively
 Analysis can pinpoint problems

Interaction Example
11

Get
Packet

Append
hdrs

Find
Dest

Enqueue
in TXQ

Simplified IP stack state machine

Process
Packet

Dequeue
from TXQ

Wait on
TXQ

Enqueue
in TX ring

Simplified TX NIC driver state machine

Interaction Example
12

Get
Packet

Append
hdrs

Find Dest

Enqueue
in TXQ

Simplified IP stack state machine

Process
Packet

Dequeue
from TXQ

Wait on
TXQ

Enqueue
in TX ring

Simplified TX NIC driver state machine

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Find
dest￫EnQ

Enqueue￫
Get pkt

Get Pkt￫
App hdrs

App hdrs￫
Find dest

EnQ￫Wait
TXQ

Wait TXQ
￫DeQ

DeQ￫
Process

Pkt

Process
Pkt￫EnQ

5 4 2 4 8

13 3 10
2

Time
Current Time: 0 5 9 11 13 15 16 23 26

0 X

Finding Global Critical Path
13

  Use standard graph analysis techniques
  Locate longest path through the graph

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Find
dest￫EnQ

Enqueue￫
Get pkt

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Enqueue￫
Wait TXQ

Wait TXQ
￫DeQ

DeQ￫
Process

Pkt

Process
Pkt￫EnQ

5 4 2 4 8

0 (13) 3 10
2

Time

Critical States & Predicting Speedup
14

  Aggregate states on critical path
 Most frequent state is the bottleneck

  Dependence graph contains all transitions and
interactions
 Not just the ones that compose critical path or

where waiting occurred
  Modify weights on the critical path

 Re-analyze data to see how critical path changes
 Next critical path length → potential speedup

Resource Dependence Loops
15

  Critical path can sometimes be improved
without reducing latency of any tasks

  In resource constrained environments critical
path can be shorted by providing more
resources

Resource Dependence Loops

  Analysis automatically find candidates
  Addition of buffering changes critical path

16

A0-A1 A1-A2 A2-A3 A3-A0 A0-A1 A1-A2 A2-A3 A3-A0

B0-B1 B1-B2 B2-B3 B3-B0 B0-B1 B1-B2 B3-B3 B3-B0

C0-C1 C1-C2 C2-C0 C0-C1 C1-C2 C2-C0

Time

Iteration 2 Iteration 1

Workloads
17

  Linux 2.6.18
  SinkGen – Streaming benchmark from CERN

 Analyzed the transmit side
  Lighttpd – High-performance web server

 Uses non-blocking I/O to manage connections
 Used by large websites

  Metric is bandwidth achieved

TCP Transmit
18

  Start with default M5 system parameters
1. Capture bottleneck data from that system
2.  Locate current bottleneck
3. Predict performance when bottleneck is removed
4. Repeat steps 2 and 3 for successive bottlenecks
5. Verify that the locations and predictions are

correct

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

4000

Config 2 Config 3 Config 4

Predicted Actual

19

Initial
  How did we do?

  Run experiments
making the above
suggested
changes

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

4000

Config 3 Config 4

Predicted Actual   Predict performance
again, this time
starting with
configuration 2

 Config 3: 1%
 Config 4: 15%

20

Initial

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

Config 4

Predicted Actual   Predict performance
one last time, starting
with configuration 3
 3% error

21

Initial

Experiments and Errors
22

  Additional experiments are in the paper
 Multi-core speed up of web server

  Describe why errors occurred
 Compare modified dependence graph to observed

graph from new simulation

Conclusion
23

  Architects are increasing looking at system-level
issues for performance

  Apply critical path analysis to complete systems
composed of concurrent components
  Span multiple layers of HW &SW
  Automate extraction of dependence graphs

  Identify end-to-end bottlenecks in network systems
  Critical tasks
  Resource dependence loops
  Performance of hypothetical systems
  Minutes not hours

Questions? 24

