
Performance Forecasting:
Finding bottlenecks before they happen

Ali Saidi†◊, Nathan Binkert‡, Steve Reinhardt§†, Trevor Mudge†

† – University of Michigan

‡ – HP Labs

§ – AMD Research

◊ – ARM R&D

1

June 23, 2009

Performance Analysis Challenge
2

  Today’s workloads & systems are complex
 Many layers of HW (disk, network), SW (app, OS)

  How to evaluate systems in design stage?
 Where are the bottlenecks?

  Conventional tools inadequate

Application
Kernel
•  Protocol
•  Driver

Hardware
•  NIC
•  Disk

Network
Hardware
•  NIC
•  Disk

Kernel
•  Protocol
•  Driver

Application

Machine 1 Machine 2

Application
Kernel
•  Protocol
•  Driver

Hardware
•  NIC
•  Disk

Network
Hardware
•  NIC
•  Disk

Kernel
•  Protocol
•  Driver

Application

Machine 1 Machine 2

Solution: Global Critical Path
3

  Directly identifies true bottlenecks
 Accounts for overlapped latencies

  Used successfully in past in isolated domains
 Fields et al.  out-of-order CPU
 Barford and Crovella TCP
 Yang and Miller  MPI

Building a Global Critical Path
4

  Requires global event dependence graph

Challenge:
typically requires detailed knowledge

across many domains!

Solution:
automatically extract dependence graph

from interacting state machines

End Result
5

  Our simulation technique directly identifies:
 The current bottleneck
 How much improvement until next bottleneck
 What the next bottleneck will be

  Conventional simulation approach:
 Hypothesize bottleneck
 Prototype solution
 Simulate solution
 Test hypothesis, repeat if incorrect

MINUTES

HOURS / DAYS

Constructing a Dependence Graph
6

  Systematically map state machines into a global
dependence graph
 Most HW is already specified as a state machines
 Extract implicit state machines from SW

App Protocol Driver NIC Network NIC Driver Protocol App
Machine 1 Machine 2

Explicit State Machine Conversion

Edges

Nodes

Nodes

Edges

7

State Machine Dependence Graph

dependence edge weight =
time spent in state

Explicit State Machine Conversion
8

A

B D

C

↘ t1

 ← t2

→ t3

↙ t4

Start B￫D A￫B D￫B B￫C t1-t0 t2-t1 t3-t2 t4-t3

What about software?
9

F() {	
	int a;	
	…	
	H();	
	…	
	…	
	…	
	S();	

}	

H() {	
	int z;	
	…	
	…	
	ret L();	

}	

L() {	
	int z;	
	…	
	…	
	…	
	…	
	…	

…	
}	

Start H￫L F￫H L￫F F￫S t1-t0 t2-t1 t3-t2 t4-t3

 t1 t2

 t3

t4

State Machine Interactions
10

  Link up piece of dependence graph through
these interactions

  Queues are interaction points
 Without them back pressure can’t be modeled
 Abstract entities

  Annotated in models and code
 Developed iteratively
 Analysis can pinpoint problems

Interaction Example
11

Get
Packet

Append
hdrs

Find
Dest

Enqueue
in TXQ

Simplified IP stack state machine

Process
Packet

Dequeue
from TXQ

Wait on
TXQ

Enqueue
in TX ring

Simplified TX NIC driver state machine

Interaction Example
12

Get
Packet

Append
hdrs

Find Dest

Enqueue
in TXQ

Simplified IP stack state machine

Process
Packet

Dequeue
from TXQ

Wait on
TXQ

Enqueue
in TX ring

Simplified TX NIC driver state machine

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Find
dest￫EnQ

Enqueue￫
Get pkt

Get Pkt￫
App hdrs

App hdrs￫
Find dest

EnQ￫Wait
TXQ

Wait TXQ
￫DeQ

DeQ￫
Process

Pkt

Process
Pkt￫EnQ

5 4 2 4 8

13 3 10
2

Time
Current Time: 0 5 9 11 13 15 16 23 26

0 X

Finding Global Critical Path
13

  Use standard graph analysis techniques
  Locate longest path through the graph

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Find
dest￫EnQ

Enqueue￫
Get pkt

Get Pkt￫
App hdrs

App hdrs￫
Find dest

Enqueue￫
Wait TXQ

Wait TXQ
￫DeQ

DeQ￫
Process

Pkt

Process
Pkt￫EnQ

5 4 2 4 8

0 (13) 3 10
2

Time

Critical States & Predicting Speedup
14

  Aggregate states on critical path
 Most frequent state is the bottleneck

  Dependence graph contains all transitions and
interactions
 Not just the ones that compose critical path or

where waiting occurred
  Modify weights on the critical path

 Re-analyze data to see how critical path changes
 Next critical path length → potential speedup

Resource Dependence Loops
15

  Critical path can sometimes be improved
without reducing latency of any tasks

  In resource constrained environments critical
path can be shorted by providing more
resources

Resource Dependence Loops

  Analysis automatically find candidates
  Addition of buffering changes critical path

16

A0-A1 A1-A2 A2-A3 A3-A0 A0-A1 A1-A2 A2-A3 A3-A0

B0-B1 B1-B2 B2-B3 B3-B0 B0-B1 B1-B2 B3-B3 B3-B0

C0-C1 C1-C2 C2-C0 C0-C1 C1-C2 C2-C0

Time

Iteration 2 Iteration 1

Workloads
17

  Linux 2.6.18
  SinkGen – Streaming benchmark from CERN

 Analyzed the transmit side
  Lighttpd – High-performance web server

 Uses non-blocking I/O to manage connections
 Used by large websites

  Metric is bandwidth achieved

TCP Transmit
18

  Start with default M5 system parameters
1. Capture bottleneck data from that system
2.  Locate current bottleneck
3. Predict performance when bottleneck is removed
4. Repeat steps 2 and 3 for successive bottlenecks
5. Verify that the locations and predictions are

correct

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

4000

Config 2 Config 3 Config 4

Predicted Actual

19

Initial
  How did we do?

  Run experiments
making the above
suggested
changes

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

4000

Config 3 Config 4

Predicted Actual   Predict performance
again, this time
starting with
configuration 2

 Config 3: 1%
 Config 4: 15%

20

Initial

TCP Streaming Benchmark

0

500

1000

1500

2000

2500

3000

3500

Config 4

Predicted Actual   Predict performance
one last time, starting
with configuration 3
 3% error

21

Initial

Experiments and Errors
22

  Additional experiments are in the paper
 Multi-core speed up of web server

  Describe why errors occurred
 Compare modified dependence graph to observed

graph from new simulation

Conclusion
23

  Architects are increasing looking at system-level
issues for performance

  Apply critical path analysis to complete systems
composed of concurrent components
  Span multiple layers of HW &SW
  Automate extraction of dependence graphs

  Identify end-to-end bottlenecks in network systems
  Critical tasks
  Resource dependence loops
  Performance of hypothetical systems
  Minutes not hours

Questions? 24

