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Performance Analysis Challenge 
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  Today’s workloads & systems are complex  
 Many layers of HW (disk, network), SW (app, OS) 

  How to evaluate systems in design stage? 
 Where are the bottlenecks? 

  Conventional tools inadequate 
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Solution: Global Critical Path 
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  Directly identifies true bottlenecks 
 Accounts for overlapped latencies 

  Used successfully in past in isolated domains 
 Fields et al.  out-of-order CPU 
 Barford and Crovella TCP 
 Yang and Miller  MPI 



Building a Global Critical Path 
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  Requires global event dependence graph 

Challenge: 
typically requires detailed knowledge 

across many domains! 

Solution: 
automatically extract dependence graph 

from interacting state machines 



End Result 
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  Our simulation technique directly identifies: 
 The current bottleneck 
 How much improvement until next bottleneck 
 What the next bottleneck will be 

  Conventional simulation approach: 
 Hypothesize bottleneck 
 Prototype solution 
 Simulate solution 
 Test hypothesis, repeat if incorrect 
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Constructing a Dependence Graph 
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  Systematically map state machines into a global 
dependence graph 
 Most HW is already specified as a state machines 
 Extract implicit state machines from SW 

App Protocol Driver NIC Network NIC Driver Protocol App 
Machine 1 Machine 2 



Explicit State Machine Conversion 
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State Machine Dependence Graph 

dependence edge weight = 
time spent in state 



Explicit State Machine Conversion 
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What about software? 
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F() {	
	int a;	
	…	
	H();	
	…	
	…	
	…	
	S();	

}	

H() {	
	int z;	
	…	
	…	
	ret L();	

}	

L() {	
	int z;	
	…	
	…	
	…	
	…	
	…	

…	
}	
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State Machine Interactions 
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  Link up piece of dependence graph through 
these interactions 

  Queues are interaction points 
 Without them back pressure can’t be modeled  
 Abstract entities  

  Annotated in models and code 
 Developed iteratively 
 Analysis can pinpoint problems 



Interaction Example 
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Finding Global Critical Path 
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  Use standard graph analysis techniques 
  Locate longest path through the graph 
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Critical States & Predicting Speedup 
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  Aggregate states on critical path 
 Most frequent state is the bottleneck 

  Dependence graph contains all transitions and 
interactions 
 Not just the ones that compose critical path or 

where waiting occurred 
  Modify weights on the critical path 

 Re-analyze data to see how critical path changes 
 Next critical path length → potential speedup 



Resource Dependence Loops 
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  Critical path can sometimes be improved 
without reducing latency of any tasks 

  In resource constrained environments critical 
path can be shorted by providing more 
resources 



Resource Dependence Loops 

  Analysis automatically find candidates  
  Addition of buffering changes critical path 
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Workloads 
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  Linux 2.6.18 
  SinkGen – Streaming benchmark from CERN 

 Analyzed the transmit side   
  Lighttpd – High-performance web server 

 Uses non-blocking I/O to manage connections 
 Used by large websites 

  Metric is bandwidth achieved 



TCP Transmit 
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  Start with default M5 system parameters 
1. Capture bottleneck data from that system 
2.  Locate current bottleneck 
3. Predict performance when bottleneck is removed 
4. Repeat steps 2 and 3 for successive bottlenecks 
5. Verify that the locations and predictions are 

correct 



TCP Streaming Benchmark 
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Initial 
  How did we do? 

  Run experiments 
making the above 
suggested 
changes 



TCP Streaming Benchmark 
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TCP Streaming Benchmark 
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Experiments and Errors 
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  Additional experiments are in the paper 
 Multi-core speed up of web server  

  Describe why errors occurred 
 Compare modified dependence graph to observed 

graph from new simulation 



Conclusion 
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  Architects are increasing looking at system-level 
issues for performance 

  Apply critical path analysis to complete systems 
composed of concurrent components 
  Span multiple layers of HW &SW 
  Automate extraction of dependence graphs 

  Identify end-to-end bottlenecks in network systems 
  Critical tasks 
  Resource dependence loops 
  Performance of hypothetical systems 
  Minutes not hours 



Questions? 24 


