Temperature-Constrained Power Control for Chip Multiprocessors with Online Model Estimation

Yefu Wang, Kai Ma, Xiaorui Wang

Department of EECS University of Tennessee, Knoxville

Introduction

Power and temperature are serious concerns for processors

- Processors consume a major part of power in computer systems
- System failure due to overheating
- Cost of thermal packaging
- Increased level of core integration makes it worse

Power control for chip multiprocessors

- Peak power needs to be controlled
- Temperature must be kept lower than a threshold
- The performance delivered per watt needs to be maximized

State of the Art

Power control for CMP

- Open-loop search or optimization [Isci'06], [Teodorescu'08], etc.
 - > Highly dependent on the accuracy of the system model
- Heuristics [Isci'06], [Meng'08], etc.
 - > No theoretical guarantee of control accuracy/stability
- Chip-wide DVFS (Dynamic Voltage and Frequency Scaling) [McGowen'06], [Floyd'07], etc.
 - > Suboptimal in performance

Dynamic thermal management

- Heuristics or feedback control theory [Brooks'01], [Skadron'03], etc.
 - Power and temperature are controlled separately

Power/temperature management for server systems

- Server-level [Minerick'02], [Lefurgy'07], [Skadron'02], [Kephart'07], etc
- Server-rack-level [Kusic'16], [Wang'08], [Ranganathan'08], [Femal'05], etc
- Datacenter-level [Wang'09], [Fan'07], etc.

Our Solution

- Actuator: per-core DVFS
- Manage power and temperature together with performance optimization
 - Power shifting among cores
 - Core variation and heterogeneity should be utilized to optimize processor performance
- Control-theoretic design
 - Multi-Input-Multi-Output (MIMO) control
 - To decide the DVFS levels of multiple cores
 - Model predictive control (MPC) theory
 Well-established MIMO control theory with constraint
 - Theoretical guaranteed control performance and stability
- Online model estimation and correction
- Empirical results on hardware testbed

Temperature-Constrained Power Control Loop

MIMO control loop invoked periodically

- Power monitor sends the chip-level power consumption to the controller
- Controller reads temperature and performance metrics of each core
- Controller computes new DVFS levels based on MPC control theory
- New per-core DVFS levels are sent to the cores
- Online model estimator updates the power model

Steps of Model Predictive Control

1. System modeling

• Power model

2. Modeling the constraints

- Temperature constraint
- Physical frequency constraint
- Power budget

3. Controller design and analysis

- Problem formulation and solution
- Stability analysis

Power Model

Core level [Lefurgy'07], [Raghavendra'08]

$$p_i(k) = a_i f_i(k) + c_i \implies p_i(k+1) = p_i(k) + a_i \Delta f_i(k)$$

Temperature Model and Constraint

From power to temperature [Han'07], [Brooks'07]

 $\mathbf{t}(\mathbf{k}+1) = \mathbf{A}_{\mathrm{T}}\mathbf{t}(\mathbf{k}) + \mathbf{B}_{\mathrm{T}}\mathbf{p}(\mathbf{k})$

From frequency to temperature

 $p_i(k) = a_i f_i(k) + c_i \implies \Delta t(k) = A_T \Delta t(k-1) + B \Delta f(k-1)$

Model Predictive Controller Design

Control objective: minimize the cost function

Constraints:

Model Variation

Actual system model changes significantly at runtime

- Unpredictable workload affects power behavior
- Controller can be used on a different CMP
- Stability range
 - System is proven to be stable when the system model changes in a wide range
- Inaccurate model leads to degraded performance
 - Overshoot
 - Long settling time
- Use a standard recursive least square (RLS) estimator to correct the model periodically

System Implementation

Testbed

- CPU: Xeon X5365
- Power monitor [lsci'03], [Wu'06]

- Temperature sensor: coretemp driver
- Simulation environment
 - CPU simulator: SESC with per-core DVFS support
 - Power simulator: Wattch
- Workload: SPEC CPU 2006
- Core frequency modulator
 - 4 discrete freq levels to approximate a fractional level?
 - > For 2.89GHz, use 2.67, 3, 3, 2.67, 3, 3 ... on a smaller timescale (subintervals)

Accurate Power Control

MPC can precisely control the power of the CMP, with a standard deviation smaller than 1 W

Better Application Performance

Prediction-based

- Predict the power/performance of every DVFS combination based on an offline analysis.
- Select DVFS levels with the best performance under the power constraint
 Ad Hoc: trial and error
 - Power > budget: select a core and decrease its DVFS level by 1
 - Power < budget: select a core and increase its DVFS level by 1

Temperature Constraint

- Emulate a thermal emergency by lowering the temperature constraint
 - Temperatures are quickly constrained to stay below the desired value
 - Power consumption reduced for temperature reduction

Conclusion

A temperature-constrained chip-level power controller

- Designed based on MPC control theory
- Accurately controls power consumption
- Temperatures of the cores are limited to stay below the constraint.
- An online model estimator periodically updates the system model

Compared with state-of-the-art work

- More accurate power control
- Better application performance

This work was supported by

- NSF CAREER Award CNS-0845390
- NSF CSR Grant CNS-0720663
- Power-Aware Computing Award, Microsoft Research
- Office of Naval Research (N00014-09-1-0750)

