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Introduction t oduct o

Power and temperature are serious concerns for 
processors
• Processors consume a major part of 
power in computer systemspower in computer systems
• System failure due to overheating
• Cost of thermal packaging

I d l l f i i• Increased level of core integration 
makes it worse

Power control for chip multiprocessorsPower control for chip multiprocessors
• Peak power needs to be controlled
• Temperature must be kept lower than a 
threshold
• The performance delivered per watt needs 
to be maximized [Mesa-Martinez’08]
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to be maximized



State of the ArtState o t e t
Power control for CMP
• Open-loop search or optimization [Isci’06] [Teodorescu’08] etc• Open-loop search or optimization [Isci 06], [Teodorescu 08], etc.

Highly dependent on the accuracy of the system model

• Heuristics [Isci’06], [Meng’08], etc.
No theoretical guarantee of control accuracy/stabilityNo theoretical guarantee of control accuracy/stability

• Chip-wide DVFS  (Dynamic Voltage and Frequency Scaling)  
[McGowen’06], [Floyd’07], etc.

Suboptimal in performanceSuboptimal in performance

Dynamic thermal management
Heuristics or feedback control theory [Brooks’01] [Skadron’03] etc• Heuristics or feedback control theory [Brooks’01], [Skadron’03], etc.

Power and temperature are controlled separately

Power/temperature management for server systemsPower/temperature management for server systems
• Server-level [Minerick’02], [Lefurgy’07], [Skadron’02], [Kephart’07], etc
• Server-rack-level [Kusic’16], [Wang’08], [Ranganathan’08], [Femal’05], etc
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• Datacenter-level  [Wang’09], [Fan’07], etc.



Our SolutionOu So ut o

Actuator: per-core DVFS
Manage power and temperature together with performance 
optimization
• Power shifting among coresPower shifting among cores
• Core variation and heterogeneity should be utilized to optimize 

processor performance
Control theoretic designControl-theoretic design
• Multi-Input-Multi-Output (MIMO) control

To decide the DVFS levels of multiple cores

• Model predictive control (MPC) theory
Well-established MIMO control theory with constraint

• Theoretical guaranteed control performance and stability
Online model estimation and correction
Empirical results on hardware testbed
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Temperature-Constrained Power Control Loope pe atu e Co st a ed o e Co t o oop

MIMO control loop invoked periodically
• Power monitor sends the chip-level power consumption to the controller
• Controller reads temperature and performance metrics of each core 
• Controller computes new DVFS levels based on MPC control theory
• New per-core DVFS levels are sent to the cores
• Online model estimator updates the power model 
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Steps of Model Predictive ControlSteps o ode ed ct e Co t o

1. System modelingy g
• Power model

2. Modeling the constraintsg
• Temperature constraint
• Physical frequency constraint
• Power budget

3. Controller design and analysis
• Problem formulation and solution
• Stability analysis
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Power Modelo e ode

Core level [Lefurgy’07] [Raghavendra’08]Core level [Lefurgy 07], [Raghavendra 08]

iiii ckfakp += )()(

⎤⎡ Δ )(kf

)()()1( kfakpkp iiii Δ+=+

Chip level
[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ

Δ
+=+

)(

)(
)()1(

1

1

kf

kf
aakcpkcp

N

N MK

⎦⎣ )(fN

Total Power Frequency Vector

Model estimation and validation
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Temperature Model and Constrainte pe atu e ode a d Co st a t
From power to temperature [Han’07], [Brooks’07]

From frequency to temperature
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Model estimation and validation
• White noise input
• System identification
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Model Predictive Controller Designode ed ct e Co t o e es g
Control objective: minimize the cost function
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Model VariationModel Variation

Actual system model changes significantly at runtime
• Unpredictable workload affects power behavior 
• Controller can be used on a different CMP

Stability rangeStability range
• System is proven to be stable when the system model 

changes in a wide range
Inaccurate model leads to degraded performance
• Overshoot
• Long settling time• Long settling time

Use a standard recursive least square (RLS) 
estimator to correct the model periodicallyp y
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System Implementation
Testbed
• CPU: Xeon X5365

Syste p e e tat o

• CPU: Xeon X5365
• Power monitor [Isci’03], [Wu’06]

Power lines
(Current signal)

Current probe

USB interface

• Temperature sensor: coretemp driver

Simulation environment

p
(1mv/A)

• CPU simulator: SESC with per-core DVFS support
• Power simulator: Wattch

Workload: SPEC CPU 2006
Core frequency modulator
• 4 discrete freq levels to approximate a fractional level?

For 2 89GHz use 2 67 3 3 2 67 3 3 on a smaller timescale (subintervals)
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For 2.89GHz, use 2.67, 3, 3, 2.67, 3, 3 … on a smaller timescale (subintervals)



Accurate Power Controlccu ate o e Co t o

Budget Change
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MPC can precisely control the power of the CMP, with aMPC can precisely control the power of the CMP, with a 
standard deviation smaller than 1 W
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Better Application Performancepp
Prediction-based 

• Predict the power/performance of every DVFS combination based on an 
offline analysis. 
• Select DVFS levels with the best performance under the power constraint

Ad Hoc: trial and error
• Power > budget: select a core and decrease its DVFS level by 1
• Power < budget: select a core and increase its DVFS level by 1

More accurate power control and better application performance
Confirmed by simulation results with 4, 8 and 16 cores
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(More results available in paper)



Temperature Constrainte pe atu e Co st a t
Emulate a thermal emergency by lowering the temperature 
constraintconstraint
• Temperatures are quickly constrained to stay below the desired value
• Power consumption reduced for temperature reduction
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ConclusionCo c us o

A temperature-constrained chip-level power p p p
controller
• Designed based on MPC control theory
• Accurately controls power consumption
• Temperatures of the cores are limited to stay below the 

constraintconstraint.
• An online model estimator periodically updates the system 

model

Compared with state-of-the-art work
• More accurate power control
• Better application performance
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