Indirect Adaptive Routing on Large Scale Interconnection Networks

Nan Jiang, William J. Dally

John Kim

Computer System
Laboratory
Stanford University

Korean Advanced Institute of Science and Technology

Overview

- Indirect adaptive routing (IAR)
 - Allow adaptive routing decision to be based on local and remote congestion information
- Main contributions
 - Three new IAR algorithms for large scale networks
 - Steady state and transient performance evaluations
 - Impact of network configurations
 - Cost of implementation

Presentation Outline

- Background
 - The dragonfly network
 - Adaptive routing
- Indirect adaptive routing algorithms
- Performance results
- Implementation considerations

The Dragonfly Network

- High Radix Network
 - High radix routers
 - Small network diameter
- Each router
 - Three types of channels
 - Directly connected to a few other groups
- Each group
 - Organized by a local network
 - Large number of global channels (GC)
- Large network with a global diameter of one

Routing on the Dragonfly

- Minimal Routing (MIN)
 - 1. Source local network
 - 2. Global network
 - 3. Destination local network
- Some Adversarial traffic congests the global channels
 - Each group i sends all packets to group i+1
- Oblivious solution: Valiant's Algorithm (VAL)
 - Poor performance on benign traffic

Adaptive Routing

- Choose between the MIN path and a VAL path at the packet source [Singh'05]
 - Decision metric: path delay
 - Delay: product of path distance and path queue depth
- Measuring path queue length is unrealistic
- Use local queues length to approximate path
 - Require stiff backpressure

Adaptive Routing: Worst Case Traffic

Indirect Adaptive Routing

- Improve routing decision through remote congestion information
- Previous method:
 - Credit round trip [Kim et. al ISCA'08]
- Three new methods:
 - Reservation
 - Piggyback
 - Progressive

Credit Round Trip (CRT)

- Delay the return of local credits from the congested router
- Creates the illusion of stiffer backpressure

Drawbacks

- Remote congestion is still inferred through local queues
- Information not up to date

Reservation (RES)

- Each global channel track the number of incoming MIN packets
- Injected packets creates a reservation flit
- Routing decision based on the reservation outcome

- Drawbacks
 - Reservation flit flooding
 - Reservation delay

Piggyback (PB)

- Congestion broadcast
 - Piggybacking on each packet
 - Send on idle channels
- Congestion data compression

- Drawbacks
 - Consumes extra bandwidth
 - Congestion information not up to date (broadcast delay)

Progressive (PAR)

- MIN routing decisions at the source are not final
- VAL decisions are final
- Switch to VAL when encountering congestion

- Draw backs
 - Need an additional virtual channel to avoid deadlock
 - Add extra hops

Experimental Setup

- Fully connected local and global networks
 - 33 groups
 - 1,056 nodes
- 10 cycle local channel latency
- 100 cycle global channel latency
- 10-flit packets

Steady State Traffic: Uniform Random

Steady State Traffic: Worst Case

Transient Traffic: Uniform Random to Worst Case

Network Configuration Considerations

- Packet size
 - RES requires long packets to amortize reservation flit cost
 - Routing decision is done on per packet basis
- Channel latency
 - Affects information delay (CRT, PB)
 - Affects packet delay (PAR, RES)
- Network size
 - Affects information bandwidth overhead (RES, PB)
- Global diameter greater than one
 - Need to exchange congestion information on the global network

Cost Considerations

- Credit round trip
 - Credit delay tracker for every local channel
- Reservation
 - Reservation counter for every global channel
 - Additional buffering at the injection port to store packets waiting for reservation
- Piggyback
 - Global channel lookup table for every router
 - Increase in packet size
- Progressive
 - Extra virtual channel for deadlock avoidance

Conclusion

- Three new indirect adaptive routing algorithms for large scale networks
- Performance and design evaluation of the algorithms
- Best Algorithm?
 - Piggyback performed the best under steady state traffic
 - Progressive responded fastest to transient changes
 - Network configurations will affect some algorithm performance
 - Cost of implementation

Thank You!

Questions?

Adaptive Routing: Uniform Traffic

Transient Traffic: Worst Case to Uniform Random

Transient Traffic: Worst Case 1 to Worst Case 10

1000 Random Permutation Traffic

Effect of Packet size on RES: Worst Case Traffic

Large local network: Uniform Random

Large local network: Worst Case

