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Overview

e Indirect adaptive routing (IAR)

— Allow adaptive routing decision to be based on local and
remote congestion information

e Main contributions
— Three new IAR algorithms for large scale networks

— Steady state and transient performance evaluations
— Impact of network configurations
— Cost of implementation



Presentation Outline

e Background
- The dragonfly network
— Adaptive routing

e Indirect adaptive routing algorithms
e Performance results
e Implementation considerations



The Dragonfly Network

High Radix Network
— High radix routers
— Small network diameter

Each router
— Three types of channels

— Directly connected to a few
other groups

Each group
— Organized by a local network

— Large number of global
channels (GC)

Large network with a global
diameter of one
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Routing on the Dragonfly

Minimal Routing (MIN)
1. Source local network

2. Global network
3. Destination local network

Some Adversarial traffic

congests the global channels / // \ \\
- Each group i sends all packets / / \ \
to group i+1 / \ \
/ // \ \
Oblivious solution: Valiant’s / N \
Algorithm (VAL) < B o115 | Router 2
— Poor performance on benign Pt N
traffic :




Adaptive

Routing

Choose between the MIN path
and a VAL path at the packet
source [Singh'05]

— Decision metric: path delay

— Delay: product of path
distance and path queue depth

Measuring path queue length
is unrealistic

Use local queues length to
approximate path
— Require stiff backpressure
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Adaptive Routing: Worst Case Traffic
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Indirect Adaptive Routing

e Improve routing decision through remote
congestion information

e Previous method:
— Credit round trip [Kim et. al ISCA'08]

e Three new methods:

— Reservation
— Piggyback
— Progressive



Credit Round Trip (CRT)

Delay the return of local
credits from the congested
router

Creates the illusion of
stiffer backpressure

Drawbacks

— Remote congestion is still
inferred through local
queues

- Information not up to date
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Reservation (RES)

Each global channel track
the number of incoming
MIN packets

Injected packets creates a
reservation flit

Routing decision based on
the reservation outcome

Drawbacks
— Reservation flit flooding
— Reservation delay
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Piggyback (PB)

Congestion broadcast % ﬁ

— Piggybacking on each
packet

— Send on idle channels
MIN VAL

Congestlo_n data Ge s
compression 7 Y

Drawbacks —

— Consumes extra B?J(s:y F(ffe
bandwidth

— Congestion information Source
not up to date Router

(broadcast delay) - J




Progressive (PAR)

the source are not final
VAL decisions are final

Switch to VAL when
encountering congestion

MIN routing decisions at % i

Draw backs

— Need an additional virtual
channel to avoid deadlock

— Add extra hops

Source
Router




Experimental Setup

Fully connected local and global networks
— 33 groups

- 1,056 nodes

10 cycle local channel latency

100 cycle global channel latency

10-flit packets



Steady State Traffic: Uniform Random
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Steady State Traffic: Worst Case
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Transient Traffic: Uniform Random to Worst Case

Average Packet Latency per Cycle - UR to WC
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Network Configuration Considerations

Packet size
— RES requires long packets to amortize reservation flit cost
— Routing decision is done on per packet basis

Channel latency
— Affects information delay (CRT, PB)
— Affects packet delay (PAR, RES)

Network size
- Affects information bandwidth overhead (RES, PB)

Global diameter greater than one

— Need to exchange congestion information on the global
network



Cost Considerations

Credit round trip
— Credit delay tracker for every local channel

Reservation
— Reservation counter for every global channel

— Additional buffering at the injection port to store packets
waiting for reservation

Piggyback
— Global channel lookup table for every router
- Increase in packet size

Progressive
— Extra virtual channel for deadlock avoidance



Conclusion

Three new indirect adaptive routing algorithms for large
scale networks

Performance and design evaluation of the algorithms

Best Algorithm?

- Piggyback performed the best under steady state traffic
— Progressive responded fastest to transient changes

— Network configurations will affect some algorithm performance
— Cost of implementation



Thank You!

e Questions?



Adaptive Routing: Uniform Traffic
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Transient Traffic: Worst Case to Uniform Random

Average Packet Latency per Cycle - WC to UR
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Transient Traffic: Worst Case 1 to Worst Case 10

Average Packet Latency per Cycle -WC1 to WC10
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1000 Random Permutation Traffic
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Effect of Packet size on RES: Worst Case Traffic
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Large local network: Uniform Random
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Large local network: Worst Case
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