I)

CSAIL

Application-Aware
Deadlock-Free Oblivious Routing

Michel Kinsy, Myong Hyo Cho, Tina Wen,
Edward Suh (Cornell University), Marten van Dijk
and Srinivas Devadas

Massachusetts Institute of Technology

Outline

Routing algorithms and Motivation
Application-Aware Oblivious Routing

Bandwidth-Sensitive Routing Approach

Router Architecture and Performance Analysis

Plans for the Future

Oblivious Routing

e Statically determined given the source and
destination addresses XY Routing

>

Link Capacity 50 Mbytes/sec
Each flow has 25 Mbytes/sec
bandwidth demand

Oblivious Routing

e Statically determined given the source and
destination addresses XY Routing

(+) Simple and fast

router designs

Link Capacity 50 Mbytes/sec
Each flow has 25 Mbytes/sec
bandwidth demand

-

>

Oblivious Routing

e Statically determined given the source and
destination addresses XY Routing

(+) Simple and fast

router designs

(-) Lead to network

under-utilization

(-) Lack proper load Fs

balancing d

Link Capacity 50 Mbytes/sec
Each flow has 25 Mbytes/sec
bandwidth demand

Adaptive Routing

e Routes dynamically adjusted based on
network status

L

Link Capacity 50 Mbytes/sec
Each flow has 25 Mbytes/sec
bandwidth demand

Adaptive Routing

e Routes dynamically adjusted based on
network status

(+) Better load balancing

and path diversity

(+) Potentially better
throughput and latency

L

Link Capacity 50 Mbytes/sec
Each flow has 25 Mbytes/sec
bandwidth demand

Adaptive Routing

e Routes dynamically adjusted based on
network status

(+) Better load balancing

and path diversity

(+) Potentially better
throughput and latency

(-) Need for global or local

knowledge of network

L

conditions Link Capacity 50 Mbytes/sec

- Each flow has 25 Mbytes/sec
(_) Router compIeX|ty bandwidth demand

Motivation

e Can we get the best of both worlds?

(+) Simple and fast router designs

(+) Better load balancing

(+) Potentially better throughput and latency

Motivation

Given an application, with knowledge of data
communication patterns, can we determine a
set of static routes that performs better than
conventional oblivious routing?

®» Exploit knowledge of bandwidth demands
(or latency requirements)

®» Ensure deadlock freedom

Platforms and Suitable applications

» Suitable for applications with predictable
communication patterns
- video compression
- processor simulation
- rendering

= Reconfigurable hardware: processing elements
and their interconnection network can be
configured

Outline

Routing algorithms and Motivation
Application-Aware Oblivious Routing

Bandwidth-Sensitive Routing Approach

Router Architecture and Performance Analysis

Plans for the Future

Application-Aware Routing Framework

Step 1: Use the targeted network topology and resources
(e.qg., buffer space) to create a conventional

channel dependency graph (CDG) D of the network.

the mesh is
transformed into a
CDG

DA D DI OV DD

Application-Aware Routing Framework

Step 1: Use the targeted network topology and resources
(e.qg., buffer space) to create a conventional

channel dependency graph (CDG) D of the network.

Vertices in the
CDG represent
network links

the mesh is
transformed into a

CDG

DA D N OV D D

© (AB)

Application-Aware Routing Framework

Step 2: Create (new) acyclic CDG D, by deleting some
edges from D.

Because the channel dependency graph D derived
from the network topology may contain many cycles

Well known result: Having cycle-free dependency
graph ensures deadlock freedom

Turn Model (Glass and Ni, 1994)

e A systematic way of generating deadlock-free routes
with small number of prohibited turns

e Deadlock-free if routes conform to at least ONE of the
turn models (acyclic channel dependence graph)

West-First Turn Model North-Last Turn Model

Acyclic CDG > Deadlock-free routes

Per the North-Last
prohibited turns, all the
edges 1n red are deleted

) 0000000 ;

North-Last Acyclic
CDG

®®®®® @@
@@@W

Acyclic CDG > Deadlock-free routes

Turns could be
prohibited at ad-hoc, all the
edges 1n red are deleted

Acyclic CDG > Deadlock-free routes

Turns could be
prohibited at ad-hoc, all the
edges 1n red are deleted.

Cih, 5 edges are
deleted here vs.
4 edges in the
" North-last

Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

Flows K =1{K,, K,, ..., K;.}. K= (s, t, d.), where s, and t. are
the source and sink, for connection i, and d, is the demand

Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

Part of the modular decomposition of the H.264 decoder,
with the following estimated bandwidths and placement:

Inverse transform/
Quantization Module
Other modules

Flow ID Source Destination Demands

K, F B 39.7 MB/s
K, B D 39.7 MB/s

K.: 39.7 MB/s K,: 39.7 MB/s

Intra-Prediction/
Deblocking
Reconstruction
Module

Video bitstream

Entropy Decoder
Module

Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

®» Flows are routed on CDG not on network
® To routing K, = (F, B, 39.7 MB/s) on the ad-hoc acyclic CDG

‘0,
’

\
\
\
\\\\\\
nnnnnn
||
1 \

lllllll

v
it
|||
w
W
W
W
W
\

Dummy nodes s, and dg are created to drive flow K, from its source F
and to sink it into B

Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

®» Flows are routed on CDG not on network
® To routing K, = (B, D, 39.7 MB/s) on the ad-hoc acyclic CDG

Dummy nodes s; and d, are created to drive flow K, from its source B
and to sink it into D

Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

®» Flows are routed on CDG not on network
® To routing K, = (B, D, 39.7 MB/s) on the ad-hoc acyclic CDG

* Edges into BE are assigned the capacity of link BE in the mesh
* No capacity or weight is assigned to the edges incident on sink nodes

Application-Aware Routing Framework

Step 4: Perform application-aware routing of the flows in
G,.

Step 5: If desired, go to Step 2 and repeat using a
different acyclic CDG.

Step 6: Select the best set of routes found, per the
routing function used in Step 4.

®» |n Step 4, bandwidth-sensitive routing can be

used as a type of application-aware routing
scheme

Outline

Routing algorithms and Motivation
Application-Aware Oblivious Routing

Bandwidth-Sensitive Routing Approach

Router Architecture and Performance Analysis

Plans for the Future

Bandwidth-Sensitive Oblivious Routing (BSOR)

Goal: Route flows while minimizing the maximum
channel load (MCL) U in the network:

minimize U=max§ Ef,-(u,V)

vis a link/vertex in the CDG (e.g., ED)

fi(u, v) is the edge’s bandwidth used
by flow i (e.g., f,(BE, ED) =0 where
f,(BE, ED) =39.7)

Bandwidth-Sensitive Oblivious Routing (BSOR)

Goal: Route flows while minimizing the maximum
channel load (MCL) U in the network:

minimize [/ = max E Y fiuv)

i=1 (u,v)EE

vis a link/vertex in the CDG (e.g., ED)

~ fi{u, v)is the edge’s bandwidth used
""" ——/ byflowi(e.g., f,(BE, ED) =0 where
— f,(BE, ED) =39.7)

‘.
‘e
‘
N
||

®» U denotes the channel with the highest load which is the

bottleneck channel in the entire network and determines

the saturation throughput of the system

BSOR Algorithms

e Unsplittable flow problem is NP-hard

e Mixed Integer-Linear Programming (MILP) can provide
an optimal solution in worst-case exponential time

— Works for small problems with ~100 flows

e Dijkstra’s weighted shortest path algorithm provides a
polynomial-time heuristic that produces good results

Mixed Integer-Linear Programming

Capacity:

Flow conservation:

Unsplittable flow:

Hop count:

Vv=s.t h(v)= E Efi(u,v) <c(u,y)

i=1 (u,v)EE

ViVuss.t, » fwu)= Y fu.w)

(wu)EE (u,w)EE

Vi, Y flsw)= Y fwr)=g,

(s; w)EE (w,t;)EE

VivVuyv)ye E,f,(u,v)<b,(u,v)*d,

Vi,Vu Ebl.(u,v) <1

(uyv)ek

Vi > b.(u.v)=<hop, helps control
(L path lengths

Mixed Integer-Linear Programming

Capacity:

Flow conservation:

Vv=s.t h(v)= E Efl.(u,v) <c(u,y)

i=1 (u,v)EE

ViVuss.t, » fwu)= Y fu.w)

(w.u)EE (uw)EE

Vi, Y flsw)= Y fwr)=g,

(s; w)EE (w,t;)EE

Unsplittable flow:

VivVuyv)ye E,f(u,v)=<b,(u,v)*d,

\\
Vi,Vu Ebl.(u,v) <1

(uyv)ek

Hop count:

Vi > b,(u.v)=hop, helps contro
(uEE path lengths

Dijkstra’s weighted shortest path BSOR

" Polynomial-time (suitable for large size problems)
" Greedily route one flow at the time

" The weighting function:
|

w(u,v)=1c'(u,v)-d,

0, if c'(u,v)=d,

, if c'(u,v)>d,

Residual capacity: c¢'(u,v) =c(u,v) - E d,(u,v)
I<i<k

Dijkstra-based Flows routing lllustration

® For flow K, (F, B, 39.7 MB/s)

* We consider all possible routes for flow K; conforming
to the acyclic graph

* Here the ad-hoc acyclic CDG is used

Dijkstra-based Flows routing lllustration

® For flow K, (F, B, 39.7 MB/s)

* We consider all possible routes for flow K; conforming

to the acyclic graph
* Final route corresponds to the “best” path in CDG

determined by the weighting function

Dijkstra-based Flows routing lllustration

® For flow K, (B, D) 39.7 MB/s

* After the edge weights are adjusted from the routing
of K,, we consider all possible routes for K,
conforming to the acyclic graph

Dijkstra-based Flows routing lllustration

® For flow K, (B, D) 39.7 MB/s

* Final route corresponds to the “best” path in CDG
determined by the weighting function

* Here both routes permitted under the acyclic CDG
have the same weight

Dijkstra-based Flows routing lllustration

il

A B I—=JC

* Final routes for the two flows are as shown

* Routing order of flows in Dijkstra-based algorithms does
affect route selection

 MILP produces the minimal MCL through exhaustive
search

Comparison of Maximum Channel Load

Transpose: d=s_,,4, Where b=1log,n

l

Bit-Complement: d,=-s,
Sthﬂe: di = Si—lmodb

H.264 decoder: bandwidths and flows derived
through profiling

Traffic XY YX ROMM Valiant Dijkstra MILP
Transpose 175 175 200 175 75 75
Bit-comp 100 100 400 200 100 100
Shuffle 100 100 150 200 75 75

H.264 214 365 336 352 124 120

Outline

Routing algorithms and Motivation
Application-Aware Oblivious Routing

Bandwidth-Sensitive Routing Approach

Router Architecture and Performance Analysis

Plans for the Future

Baseline architecture

R R R ,’;' """""""""""""" | T T T TTTm T
o N\ 1 1
1 1 1
1 : Routing VC Switch 1 [} Routing cOmputaﬁon
/I 1| Module Allocator Allocator : : (RC)
PE PE PE AN J ! !
! M 1 1
L H G I} : 1 !
/I . I s 1 1
/ 1 ! !
, . 1 1
1 VC state : : Virtual Channel
R R ! y Output | Allocation (VA)
R —n) L Port !
! | .
\‘ | 1 1
1 1
PE PE PE b : ! ! _ _
F E D \ | . X . . Switch Allocation
} ' : : I : I (SA)
“ . . 1 1
- : :
Lo VC stat \ !
state
R R R \‘ : : Output : U . |
v Port witch Traversa
— crossbar = or ' ST
Vo 1 ! (ST)
v switch : :
PE PE PE “ : | 1
A B C " : :
M o e e e e e e e e e e e e e e e e e e o e e e

3x3 Mesh network Router: routing

phases

Router architecture

Typical virtual-channel router

Router for Application-Aware Routing

__

s A
Routing vC Switch
Module Allocator Allocator
_ J

1 1
1 1
1 1
1 1
1 1
1 1
1 b b 1
1 H 1
1 y A 4 |
1 1
1 1
1 1
1 1
1 1

Routing Computation
(RC)

!

VC state Virtual Channel

Allocation (VA)

Output
— I — > Port

Switch Allocation
(SA)

;

Switch Traversal
(ST)

VC state

crossbar

! [1
! J_ switch !
1 1
1 1
1 1

Router architecture Router: routing phases

e \We need modifications to the standard router architecture for
application-aware routing

- The main change required is in the routing module
- The routing module needs table-based routing

Two ways of Table-Based Routing

Source routing Node-table routing

e Source routing

- eliminates the routing step, but results in longer packets
Node-table routing

- Each module contains a routing table, which is looked up at
every hop but this does not change the per-hop latency

Performance Analysis

e Benchmarks
- Synthetic: Transpose, Bit-Complement, and Shuffle
- Application: H.264 Decoder

e Simulator:
- a cycle-accurate network simulator

- 8 X 8 2-D mesh network with 1, 2, 4 or 8 VCs per
port

- Fixed packet length : 8 flits
- Per-hop latency : 1 cycle
- Flit buffer size per VC : 16 flits

- Simulation for 100,000 cycles after 20,000 cycles of
warm-up

Simulation Results

Shuffle 1VC
4.5
-=-Xy
E 4 $YX
g i BSOR]
L
5 2]
o 3.5} O—
(&}
o
RS 1
32
< 25 i
=2 @
(o]
= 2]
’_
©
S 15 .
'_ b
og 10 20 30 40 50 60
Offered Injection Rate (packets/cycle)
Transpose 1VC
3.5 T T T . T
_ -©- XY
$ S5
o BSOR
s 3
2
(0}
S
S 2.5 -
e
H
< 2)
o
>
e
=
= 1.5} 1
s
o
=gl i
0 2 4 6 8 10

Offered Injection Rate (packets/cycle)

12

Total Throughput (packets/cycle)

Total Throughput (packets/cycle)

NoNON
N B o

1.8

1.6

1.4

1.2

0.8

o O B Y
o ™ =2 N B O N

H264 1VC

l-e-xv

YX
BSOR(]

10 15

20

0 25
Offered Injection Rate (packets/cycle)
Bitcomp 1VC
I ' | | | x|

YX
BSOR
0 2 4 6 8 10 12

0.6

Offered Injection Rate (packets/cycle)

Simulation Results

Shuffle 1VC
4.5
-=-Xy
E 4 $YX
g i BSOR]
L
5 2]
o 3.5} O—
(&}
o
RS 1
32
< 25 i
=2 @
(o]
= 2]
’_
©
S 15 .
'_ b
og 10 20 30 40 50 60
Offered Injection Rate (packets/cycle)
Transpose 1VC
3.5 T T T . T
_ -©- XY
$ S5
o BSOR
s 3
2
(0}
S
S 2.5 -
e
H
< 2)
o
>
e
=
= 1.5} 1
s
o
=gl i
0 2 4 6 8 10

Offered Injection Rate (packets/cycle)

12

Total Throughput (packets/cycle)

Total Throughput (packets/cycle)

NoNON
N B o

1.8

1.6

1.4

1.2

0.8

o O B Y
o ™ =2 N B O N

H264 1VC

l-e-xv

YX
BSOR(]

10 15

20

0 25
Offered Injection Rate (packets/cycle)
Bitcomp 1VC
I ' | | | x|

YX
BSOR
0 2 4 6 8 10 12

0.6

Offered Injection Rate (packets/cycle)

Simulation Results

H264 8VC Static

Total Throughput (packets/cycle)

0 5 10 15 20
Offered Injection Rate (packets/cycle)

In H.264 head-of-blocking is the limiting factor for BSOR
More VCs to mitigate the effects

» \We also propose a different heuristic BSORM
(Bandwidth-Sensitive Oblivious Routing with Minimal
Routes) which requires two virtual channels [NOCS’09]

Stress-Test Results

Transpose
,o 0% Bandwidth Variation 50% Bandwidth Variation
- ‘ ‘ ‘ ‘ 2.8 ‘ ‘ ‘ ‘
E 2.6f 2.6
o ©
3 24; 3 24
% 2.2 2
X - 22
o© 3]
g 2 & 2
a 1.8 e 1 a 1.8 g
< =]
g': 1.6- E ga 1.6¢ 4
g ©-xy © 14l —XY |
E 14 E 14
= - Yx Eo ¥X
g 1.2F —A—BSOR .g L —H— —>éBSOR
- 1 - 1t
%% 2 4 6 8 10 12 % 2 4 6 8 10 12
Offered Injection Rate (packets/cycle) Offered Injection Rate (packets/cycle)

Bandwidth of each Individual flow is changed by 10%
and 50% in a random fashion

®» ROMM and Valiant do not do as well as DOR algorithms
Complete summary of our experimental results in the paper

Conclusion

e Our application-aware framework has same
router speed and complexity as required by

other oblivious algorithms

e |t does better load-balancing, (therefore shows
better performance) than other oblivious

algorithms
e |t can handle even substantial runtime

bandwidth variation with no significant

performance degradation

Conclusion

* Its limitation: need some knowledge of
the application

* To handle bursty flows, we have proposed

bandwidth-adaptive networks that contain
adaptive bidirectional links [PACT 09]

* Ongoing work:
- How does bandwidth-sensitive
routing do on the bandwidth-adaptive
network”?

Q & A Section

Thank You |

More Information at
http://csg.csail.mit.edu

Also thanks to Keun Sup Shim and Mieszko Lis for their
contribution, comments and valuable feedback

