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Oblivious Routing

e Statically determined given the source and
destination addresses XY Routing

(+) Simple and fast

router designs

(-) Lead to network

under-utilization
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Adaptive Routing

e Routes dynamically adjusted based on
network status

(+) Better load balancing

and path diversity

(+) Potentially better
throughput and latency

(-) Need for global or local

knowledge of network

L

conditions Link Capacity 50 Mbytes/sec

- Each flow has 25 Mbytes/sec
(_) Router compIeX|ty bandwidth demand



Motivation

e Can we get the best of both worlds?

(+) Simple and fast router designs

(+) Better load balancing

(+) Potentially better throughput and latency



Motivation

Given an application, with knowledge of data
communication patterns, can we determine a
set of static routes that performs better than
conventional oblivious routing?

®» Exploit knowledge of bandwidth demands
(or latency requirements)

®» Ensure deadlock freedom



Platforms and Suitable applications

» Suitable for applications with predictable
communication patterns
- video compression
- processor simulation
- rendering

= Reconfigurable hardware: processing elements
and their interconnection network can be
configured
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Application-Aware Routing Framework

Step 1: Use the targeted network topology and resources
(e.qg., buffer space) to create a conventional

channel dependency graph (CDG) D of the network.

the mesh is
transformed into a
CDG
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Application-Aware Routing Framework

Step 1: Use the targeted network topology and resources
(e.qg., buffer space) to create a conventional

channel dependency graph (CDG) D of the network.

Vertices in the
CDG represent
network links

the mesh is
transformed into a

CDG
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Application-Aware Routing Framework

Step 2: Create (new) acyclic CDG D, by deleting some
edges from D.

Because the channel dependency graph D derived
from the network topology may contain many cycles

Well known result: Having cycle-free dependency
graph ensures deadlock freedom



Turn Model (Glass and Ni, 1994)

e A systematic way of generating deadlock-free routes
with small number of prohibited turns

e Deadlock-free if routes conform to at least ONE of the
turn models (acyclic channel dependence graph)

West-First Turn Model North-Last Turn Model



Acyclic CDG > Deadlock-free routes

Per the North-Last
prohibited turns, all the
edges 1n red are deleted

) 0000000 ;

North-Last Acyclic
CDG

®®®®® @@
@@@W




Acyclic CDG > Deadlock-free routes

Turns could be
prohibited at ad-hoc, all the
edges 1n red are deleted




Acyclic CDG > Deadlock-free routes

Turns could be
prohibited at ad-hoc, all the
edges 1n red are deleted.

Cih, 5 edges are
deleted here vs.
4 edges in the
" North-last




Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

Flows K =1{K,, K,, ..., K;.}. K= (s, t, d.), where s, and t. are
the source and sink, for connection i, and d, is the demand



Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

Part of the modular decomposition of the H.264 decoder,
with the following estimated bandwidths and placement:

Inverse transform/
Quantization Module
Other modules

Flow ID Source Destination Demands

K, F B 39.7 MB/s
K, B D 39.7 MB/s

K.: 39.7 MB/s K,: 39.7 MB/s

Intra-Prediction/
Deblocking
Reconstruction
Module

Video bitstream

Entropy Decoder
Module




Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

®» Flows are routed on CDG not on network
® To routing K, = ( F, B, 39.7 MB/s) on the ad-hoc acyclic CDG
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Dummy nodes s, and dg are created to drive flow K, from its source F
and to sink it into B
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Application-Aware Routing Framework

Step 3: Transform D, into a flow network G,, given a set of
k flows denoted K.

®» Flows are routed on CDG not on network
® To routing K, = ( B, D, 39.7 MB/s) on the ad-hoc acyclic CDG

* Edges into BE are assigned the capacity of link BE in the mesh
* No capacity or weight is assigned to the edges incident on sink nodes



Application-Aware Routing Framework

Step 4: Perform application-aware routing of the flows in
G,.

Step 5: If desired, go to Step 2 and repeat using a
different acyclic CDG.

Step 6: Select the best set of routes found, per the
routing function used in Step 4.

®» |n Step 4, bandwidth-sensitive routing can be

used as a type of application-aware routing
scheme
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Bandwidth-Sensitive Oblivious Routing (BSOR)

Goal: Route flows while minimizing the maximum
channel load (MCL) U in the network:

minimize U=max§ Ef,-(u,V)

vis a link/vertex in the CDG (e.g., ED)

fi(u, v) is the edge’s bandwidth used
by flow i (e.g., f,(BE, ED) =0 where
f,(BE, ED) =39.7)




Bandwidth-Sensitive Oblivious Routing (BSOR)

Goal: Route flows while minimizing the maximum
channel load (MCL) U in the network:

minimize [/ = max E Y fiuv)

i=1 (u,v)EE

vis a link/vertex in the CDG (e.g., ED)

~ fi{u, v)is the edge’s bandwidth used
""" ——/ byflowi(e.g., f,(BE, ED) =0 where
—  f,(BE, ED) =39.7)
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®» U denotes the channel with the highest load which is the

bottleneck channel in the entire network and determines

the saturation throughput of the system



BSOR Algorithms

e Unsplittable flow problem is NP-hard

e Mixed Integer-Linear Programming (MILP) can provide
an optimal solution in worst-case exponential time

— Works for small problems with ~100 flows

e Dijkstra’s weighted shortest path algorithm provides a
polynomial-time heuristic that produces good results



Mixed Integer-Linear Programming

Capacity:

Flow conservation:

Unsplittable flow:

Hop count:

Vv=s.t h(v)= E Efi(u,v) <c(u,y)

i=1 (u,v)EE

ViVuss.t, » fwu)= Y fu.w)

(wu)EE (u,w)EE

Vi, Y flsw)= Y fwr)=g,

(s; w)EE (w,t; )EE

VivVuyv)ye E,f,(u,v)<b,(u,v)*d,

Vi,Vu Ebl.(u,v) <1

(uyv)ek

Vi > b.(u.v)=<hop, helps control
(L path lengths



Mixed Integer-Linear Programming

Capacity:

Flow conservation:

Vv=s.t h(v)= E Efl.(u,v) <c(u,y)

i=1 (u,v)EE

ViVuss.t, » fwu)= Y fu.w)

(w.u)EE (uw)EE

Vi, Y flsw)= Y fwr)=g,

(s; w)EE (w,t; )EE

Unsplittable flow:

VivVuyv)ye E,f(u,v)=<b,(u,v)*d,

\\
Vi,Vu Ebl.(u,v) <1

(uyv)ek

Hop count:

Vi > b,(u.v)=hop, helps contro
(uEE path lengths




Dijkstra’s weighted shortest path BSOR

" Polynomial-time (suitable for large size problems)
" Greedily route one flow at the time

" The weighting function:
|

w(u,v)=1c'(u,v)-d,

0, if c'(u,v)=d,

, if c'(u,v)>d,

Residual capacity: c¢'(u,v) =c(u,v) - E d,(u,v)
I<i<k



Dijkstra-based Flows routing lllustration

® For flow K, (F, B, 39.7 MB/s)

* We consider all possible routes for flow K; conforming
to the acyclic graph

* Here the ad-hoc acyclic CDG is used



Dijkstra-based Flows routing lllustration

® For flow K, (F, B, 39.7 MB/s)

* We consider all possible routes for flow K; conforming

to the acyclic graph
* Final route corresponds to the “best” path in CDG

determined by the weighting function



Dijkstra-based Flows routing lllustration

® For flow K, (B, D) 39.7 MB/s

* After the edge weights are adjusted from the routing
of K,, we consider all possible routes for K,
conforming to the acyclic graph



Dijkstra-based Flows routing lllustration

® For flow K, (B, D) 39.7 MB/s

* Final route corresponds to the “best” path in CDG
determined by the weighting function

* Here both routes permitted under the acyclic CDG
have the same weight



Dijkstra-based Flows routing lllustration

il

A B I—=JC

* Final routes for the two flows are as shown

* Routing order of flows in Dijkstra-based algorithms does
affect route selection

 MILP produces the minimal MCL through exhaustive
search



Comparison of Maximum Channel Load

Transpose: d=s_,,4, Where b=1log,n

l

Bit-Complement: d,=-s,
Sthﬂe: di = Si—lmodb

H.264 decoder: bandwidths and flows derived
through profiling

Traffic XY YX ROMM Valiant Dijkstra MILP
Transpose 175 175 200 175 75 75
Bit-comp 100 100 400 200 100 100
Shuffle 100 100 150 200 75 75

H.264 214 365 336 352 124 120
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Baseline architecture
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Router architecture
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Router for Application-Aware Routing
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Router architecture Router: routing phases

e \We need modifications to the standard router architecture for
application-aware routing

- The main change required is in the routing module
- The routing module needs table-based routing



Two ways of Table-Based Routing

Source routing Node-table routing

e Source routing

- eliminates the routing step, but results in longer packets
Node-table routing

- Each module contains a routing table, which is looked up at
every hop but this does not change the per-hop latency



Performance Analysis

e Benchmarks
- Synthetic: Transpose, Bit-Complement, and Shuffle
- Application: H.264 Decoder

e Simulator:
- a cycle-accurate network simulator

- 8 X 8 2-D mesh network with 1, 2, 4 or 8 VCs per
port

- Fixed packet length : 8 flits
- Per-hop latency : 1 cycle
- Flit buffer size per VC : 16 flits

- Simulation for 100,000 cycles after 20,000 cycles of
warm-up



Simulation Results
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Simulation Results

H264 8VC Static

Total Throughput (packets/cycle)

0 5 10 15 20
Offered Injection Rate (packets/cycle)

In H.264 head-of-blocking is the limiting factor for BSOR
More VCs to mitigate the effects

» \We also propose a different heuristic BSORM
(Bandwidth-Sensitive Oblivious Routing with Minimal
Routes) which requires two virtual channels [NOCS’09]



Stress-Test Results
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Bandwidth of each Individual flow is changed by 10%
and 50% in a random fashion

®» ROMM and Valiant do not do as well as DOR algorithms
Complete summary of our experimental results in the paper



Conclusion

e Our application-aware framework has same
router speed and complexity as required by

other oblivious algorithms

e |t does better load-balancing, (therefore shows
better performance) than other oblivious

algorithms
e |t can handle even substantial runtime

bandwidth variation with no significant

performance degradation



Conclusion

* Its limitation: need some knowledge of
the application

* To handle bursty flows, we have proposed

bandwidth-adaptive networks that contain
adaptive bidirectional links [PACT 09]

* Ongoing work:
- How does bandwidth-sensitive
routing do on the bandwidth-adaptive
network”?



Q & A Section

Thank You |

More Information at
http://csg.csail.mit.edu

Also thanks to Keun Sup Shim and Mieszko Lis for their
contribution, comments and valuable feedback



