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On-Chip Networks (NoC)
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On-Chip Networks (NoC)

*  Connect cores, caches, memory controllers, etc...
*  Examples:

*  Intel 80-core Terascale chip
*  MIT RAW chip

*  Design goals in NoC design:
*  High throughput, low latency

*  Fairness between cores, QoS, ...

*  Low complexity, low cost U
@,

:> *  Power, low energy consumption
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On-Chip Networks (NoC)

*  Connect cores, caches, memory controllers, etc...

*  Examples:

*  Intel 80-core Terascale chip
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MIT RAW Energy/Power in On-Chip Networks

* Power is a key constraint in the design

*  Design goals in of high-performance processors

*  High throu
*  FairnessS be * NoCs consume substantial portion of system

*  LoW comp Power
e ~30% in Intel 80-core Terascale [IEEE Micro’07]
*  Power, low

* ~40% in MIT RAW Chip [1sSCA'04]

* NoCs estimated to consume |00s of Watts
[Borkar, DAC’07]
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Current NoC Approaches

*  Existing approaches differ in numerous ways:

Network topology [Kim et al, ISCA’07, Kim et al, ISCA’08 etc]

Flow control [Michelogiannakis et al, HPCA’09, Kumar et al, MICRO’08, etc]
Virtual Channels [Nicopoulos et al, MICRO’06, etc]

QoS & fairness mechanisms [Lee et al, ISCA’08, etc]

Routing algorithms [Singh et al, CAL'04]

Router architecture [Park et al, ISCA’08]

Broadcast, Multicast [Jerger et al, ISCA’08, Rodrigo et al, MICRO’08]

buffers in routers!

e
Existing work assumes existence of \/_(
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Buffers in NoC Routers

*  Buffers are necessary for high network throughput @

—> buffers increase total available bandwidth in network
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Buffers in NoC Routers

*  Buffers are necessary for high netwoz

- buffers increase total availab

idire significant chip area

2., in TRIPS prototype chip, input buffers occupy 75% of
total on-chip network area [Gratz et al, ICCD’06]
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Going Bufferless...?

no buffers
A buffers
*  How much throughput do we lose? > .
- How is latency affected? £ -
>

Injection Rate

*  Up to what injection rates can we use bufferless routing?

—> Are there realistic scenarios in which NoC is
operated at injection rates below the threshold?

*  Can we achieve energy reduction?

- If so, how much...?

*  Can we reduce area, complexity, etc...? \
Answers in

our paper!
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Overview

* Introduction and Background
*  Bufferless Routing (BLESS)
*  FLIT-BLESS

 WORM-BLESS
BLESS with buffers

*  Advantages and Disadvantages

. Evaluations

*  Conclusions
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BLESS: Bufferless Routing

*  Always forward all incoming flits to some output port

*  If no productive direction is available, send to another
direction

* > packet is deflected

—> Hot-potato routing [Baran’é4, etc]

| |
__TH | .

‘ | Deflected!
O g
Buffered BLESS
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BLESS: Bufferless Routing

- Flit-Ranking
\ VC PP | . . .
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Flit-Ranking |. Create a ranking over all incoming flits

Port- . . . . . o
Prioritization | 2- For a given flit in this ranking, find the best free output-port

Apply to each flit in order of ranking
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FLIT-BLESS: Flit-Level Routing

*  Each flit is routed independently.
*  Oldest-first arbitration (other policies evaluated in paper)

Flit-Ranking I. Oldest-first ranking
Port- 2. Assign flit to productive port, if possible.
Prioritization

Otherwise, assign to non-productive port.

*  Network Topology:
—> Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, ...)

|) #output ports , #input ports  at every router
2) every router is reachable from every other router

*  Flow Control & Injection Policy:

—> Completely local, inject whenever input port is free
*  Absence of Deadlocks: every flit is always moving
*  Absence of Livelocks: with oldest-first ranking
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WORM-BLESS: Wormhole Routing

*  Potential downsides of FLIT-BLESS

*  Not-energy optimal (each flits needs header information)
*  Increase in latency (different flits take different path)

. Increase in receive buffer size
*  BLESS with wormhole routing...? 0‘0
[Dally, Seitz’86] \

. Problems: .

<t
——

*  Injection Problem O
(not known when it is safe to inject)

*  Livelock Problem
(packets can be deflected forever) O

Thomas Moscibroda, Microsoft Research
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WORM-BLESS:Wormhole Routing
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Deflect worms
if necessary!

Truncate worms

if necessary! \

At low congestion, packets Body-flit turns allocated

travel routed as worms into head-flit R to West
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| | This worm

' .
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to North Head-flit: West See paper for details...
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BLESS with Buffers

*  BLESS without buffers is extreme end of a continuum

*  BLESS can be integrated with buffers
. FLIT-BLESS with Buffers
. WORM-BLESS with Buffers

°*  Whenever a buffer is full, it’s first flit becomes
must-schedule

*  must-schedule flits must be deflected if necessary

See paper for details...
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Overview

*  Introduction and Background
*  Bufferless Routing (BLESS)
*  FLIT-BLESS

*  WORM-BLESS
*  BLESS with buffers

*  Advantages and Disadvantages

. Evaluations

*  Conclusions
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BLESS: Advantages & Disadvantages

Advantages

No buffers
Purely local flow control

Simplicity

- no credit-flows

- no virtual channels

- simplified router design

No deadlocks, livelocks

Adaptivity
- packets are deflected around
congested areas!

Router latency reduction

Area savings

Disadvantages

Increased latency
Reduced bandwidth

Increased buffering at
receiver

Header information at
each flit

Impact on energy...?

Thomas Moscibroda, Microsoft Research



Reduction of Router Latency

*  BLESS gets rid of input buffers B Allccation
and virtual channels

BW: Buffer Write
RC: Route Computation
VA: Virtual Channel Allocation

ST: Switch Traversal
LT: Link Traversal
LA LT: Link Traversal of Lookahead

Baseline head| BW | VA ST LTa [Dally, Towles'04]
Router Mt LRC | SA T
(speculative) :zd)' BW | SA | ST —m> Router Latency = 3
R — |
Can be improved to 2.
BLESS Router I | RC | ST ——)LT
~ Router LT outer Latency = 2
(standard) Router2 | RC | ST >
LT
BLESS Router | RC ST m>
Router LA LT Router Latency = |
- (optimized) Router2 | RC | ST L-[>

T
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BLESS: Advantages & Disadvantages

Advantages

No buffers
Purely local flow control

Simplicity

- no credit-flows

- no virtual channels

- simplified router design

No deadlocks, livelocks

Adaptivity
- packets are deflected around
congested areas!

Router latency reduction

Area savings

Disadvantages

Increased latency
Reduced bandwidth

Increased buffering at
receiver

Header information at
each flit \

Extensive evaluations in the paper!

Impact on energy...?
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Evaluation Methodology

* 2D mesh network, router latency is 2 cycles

o  4x4,8 core, 8 L2 cache banks (each node is a core or an L2 bank)

o  4x4, 16 core, 16 L2 cache banks (each no/Simulation is cycle-accurate 3
o  8x8, 16 core, 64 L2 cache banks (each no R =i lsiinine
and processors
o 128-bit wide links, 4-flit data packets, I-{ 5 Seif.throttling behavior
o For baseline configuration: 4VCs per phys > Aggressive processor model
*  Benchmarks L_l

o  Multiprogrammed SPEC CPU2006 and Windows Desktop applications O
o  Heterogeneous and homogenous application mixes

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement

with perfect L2 caches
—> Puts maximal stress
o  64Kbyte private LI caches on NoC C)

o  Total 16Mbyte shared L2 caches; |16 MSHRs per bank
o  DRAM model based on Micron DDR2-800

x86 processor model based on Intel P Most of our evaluations j

o 2 GHz processor, 128-entry instruction
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N
Evaluation Methodology

*  Energy model provided by Orion simulator [MICRO’02] .A

o 70nm technology, 2 GHz routers at |.0V

*  For BLESS, we model

o Additional energy to transmit header information

o Additional buffers needed on the receiver side

o Additional logic to reorder flits of individual packets at receiver
*  We partition network energy into

buffer energy, router energy, and link energy,
each having static and dynamic components.

*  Comparisons against non-adaptive and aggressive
adaptive buffered routing algorithms (DO, MIN-AD, ROMM)

Thomas Moscibroda, Microsoft Research



Evaluation — Synthethic Traces

BLESS Best
* First, the bad news © Baseline
!

100 ]
FLIT-2 h
* Uniform random injection S 80 WORM-2 ]
o ——FLIT-| ,
§ 60 + ——WORM-| )
* BLESS has significantly lower & o " MIN-AD ’
. ®
saturation throughput 5
K 20

compared to buffered
baseline.
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Evaluation — Homogenous Case Study

Baseline BLESS RL= |
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Evaluation — Homogenous Case Study
s Baseline& QBLESS RL=|s
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Evaluation — Further Results

See paper for details...

*  BLESS increases buffer requirement
at receiver by at most 2x
—> overall, energy is still reduced

*  Impact of memory latency

—> with real caches, very little slowdown! (at most 1.5%)

18
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Evaluation — Further Results

| See paper for details...

*  BLESS increases buffer requirement
at receiver by at most 2x
—> overall, energy is still reduced

*  Impact of memory latency

—> with real caches, very little slowdown! (at most 1.5%)

*  Heterogeneous application mixes
(we evaluate several mixes of intensive and non-intensive applications)
—> little performance degradation
—> significant energy savings in all cases

=> no significant increase in unfairness across different applications

*  Area savings: ~60% of network area can be saved! @

Thomas Moscibroda, Microsoft Research



Evaluation — Aggregate Results

*  Aggregate results over all 29 applications

Sparse Network Perfect L2 Realistic L2

Average Worst-Case
-46.4%

Average orst-Case

A Network Energy

A System Performance -0.15%
B BufferEnergy O LinkEnergy O RouterEnergy g -

—~ I 7 -

O
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Evaluation — Aggregate Results

*  Aggregate results over all 29 applications

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case
A Network Energy -39.4% -28.1% -46.4% -41.0%
A System Performance -0.5% -3.2% -0.15% -0.55%

Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case
A Network Energy -14.0%
A System Performance -17.1%

&
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Conclusion

*  For a very wide range of applications and network settings,
buffers are not needed in NoC

»  Significant energy savings
(32% even in dense networks and perfect caches)

*  Area-savings of 60%
*  Simplified router and network design (flow control, etc...)

*  Performance slowdown is minimal (can even increase!)

[ » A strong case for a rethinking of NoC design! }

g\ -
~
;’ "4\ * We are currently working on future research.

A *  Support for quality of service, different traffic classes, energy-
\; . \ management, etc...
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