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Overview of GPU Architecture 

  Software-managed cache 

  SIMD Execution Unit inside SM 
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SIMD Execution Unit 
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SIMD Execution Unit 
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Warp 
  Warp is the basic unit of execution 

  A group of threads (e.g. 32 threads for the Tesla GPU architecture) 

Warp Execution 

One warp 

Sources ready


4 

One warp One warp 

Inst 1 
Inst 2 
Inst 3 

Sources ready
 Sources ready
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Finite number of streaming processors


Programmer specifies the # threads




Occupancy 
  Shows how many warps are assigned to the SM 

  Warps are assigned at block granularity 

  Programmer specifies the number of threads per block 

100% Occupancy  
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Register  
requirements per block 

Shared memory 
requirements per block 

Only one block is allocated  



Higher Occupancy 
  Better processor utilization 

  Hide the memory latency 
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Warp 1 

Warp 2 
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Processor is not utilized  

Warp 3 

Warp 4 

Warp 5 
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High Occupancy = High Performance ? 

  Programmers try to optimize programs for occupancy 
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Increase in 
occupancy 

Performance 
improvement 



High Occupancy ≠ High Performance 

  Programmers try to optimize programs for occupancy 
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  No performance improvement from increased occupancy 

Increase in 
occupancy 

No performance 
improvement 



Motivation of the Work 
  Propose analytical model that can estimate performance 

  Why ? 

  Optimizing for occupancy may not have impact on the performance 

  Occupancy does not consider the application behavior 

  To understand the GPU performance and bottlenecks 

  Prediction for faster performance simulation 
  Other benefits 
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How is Performance Determined ? 

C M No Parallelism 

Infinite Parallelism 

Finite Parallelism 
(Two) 
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Saved cycles 

Saved cycles 

  Memory accesses can be overlapped between warps 

  Performance significantly depends on the memory-level parallelism 
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  Performance can be predicted by knowing the amount of 
memory-level parallelism 

Additional Cycles 



MWP 
  Memory Warp Parallelism 

  Metric of memory-level parallelism  

1 1 
2 2 

3 3 
4 4 

MWP=4 
 Four warps are overlapped 
during memory accesses 
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  Tightly coupled with DRAM system 

  Memory latency, bandwidth, memory access type 

  Maximum number of warps that can overlap memory accesses  



Memory Access Type 

Coalesced memory access type 
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One memory transaction 

Thread 1
 Thread 2
 Thread 3
 Thread 4
 Thread 5
 Thread 6
 Thread N


Addr 1
 Addr 2
 Addr 3
 Addr 4
 Addr 5
 Addr 6
 Addr N


Thread 2
 Thread 3
 Thread 4
 Thread N
Thread 1


Multiple memory transactions 

Addr 1
 Addr 10
 Addr 2
 Addr 20
 Addr N


One warp generates a memory request 

Uncoalesced memory access type 

- More processing cycles for the uncoalesced case 

One warp 



Memory System Model 

SM 

SM 

SM 

Memory Core 

Bandwidth 
Departure delay 

Warp2


Warp2

Warp3


Warp1


  Each SM has a simple queue and consumes an equal bandwidth 

TIME 
Memory Latency


Warp1


Warp3
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  MWP is determined by #Active SMs, #Active warps, Bandwidth,  
     Types of memory accesses (Coalesced, Uncoalesced) 

Coalesced 

Departure delay 

Uncoalesced 



CWP 

1 1 3 
2 4 2 

3 
4 

CWP = 4 


MWP = 2 


Memory 
Waiting period


  Computation Warp Parallelism 

  Analogous concept to MWP 
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   Number of warps that execute instructions during one memory access 
period 

  Three scenarios can occur depending on the MWP and CWP 
relationship 



(1) When MWP ≤ CWP 

1 1 3 5 7 
2 4 6 8 2 

3 
4 

5 
6 

7 
8 

MWP=2,   N = 8 (Number of warps) 

CWP=4 


2 Computation + 4 Memory 

  Computation cycles are hidden by memory waiting periods 

  Overall performance is dominated by the memory cycles 
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(MWP=2,   N = 8) 




(2) When MWP > CWP  

1 1 

3 

5 

7 

2 

4 

6 

8 

2 
3 

4 
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6 
7 
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8 Computation + 1 Memory 

  Memory accesses are mostly hidden due to high MWP 

  Overall performance is dominated by the computation cycles 
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MWP=8 N = 8 (Number of warps) 

(MWP=8,   N = 8) 




(3) Not Enough Warps 

1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 

  MWP is limited by the number of active warps per SM 

Two warps 
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Idle cycles 

  Increasing the number of warps will increase the processor utilization 

  The analytical model is inside the paper 
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Evaluation Methodology 
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GPU Model  8800GTX FX5600 8800GT GTX280 
Number of SMs 16 16 14 30 

(SP) Processor Cores  128 128 112 240 

Processor Clock  1.35 GHz  1.35GHz  1.5 GHz  1.3 GHz  

Memory Size  768 MB  1.5 GB  512 MB  1 GB  

Memory Bandwidth  86.4 GB/s  76.8 GB/s  57.6 GB/s  141.7 GB/s  

Computing Version  1 1 1.1 1.3 

  Micro benchmarks are devised to obtain the memory parameters 
  Memory latency, departure delay 

  Merge benchmarks 
  Execution time, CPI  compared 

  Model inputs 
  Number of instructions, memory type, thread/block configuration, 
memory parameters 

Evaluated Systems 



Micro Benchmarks 

 Parameters FX5600 GTX280 
 Memory latency 420 450 
 Departure delay  
 uncoalesced 10 40 

 Departure delay  
 coalesced 4 4 

Memory Model Parameters 
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Coalesced


Uncoalesced


  Coalesced, uncoalesced memory types 

  Ratio of memory to computation instructions is varied 



Merge Benchmarks 

  Merge benchmark performance estimation 

  The prediction closely follows the actual execution 

  Two types of execution behavior are predicted 
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CPI Comparison 
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  CPI comparison between the model and the actual execution 

GTX280 8800GT Overall 13.3 % error 
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Conclusions 

  Introduced MWP, CWP metrics that determine the performance 

  Simplified the complex memory operations 
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  Prediction 
  For Micro benchmarks, the prediction error is 5.4% 
  For Merge benchmarks, the prediction error is 13.3% 

  First analytical model that calculates the execution cycles for GPU 

  Future research 
  Help providing more systematic approaches for optimizing GPGPU 
applications 

  Better understanding of the performance aspects of the GPU 
architecture 



Thank you 
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Questions ? 
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Performance 
improvement 

Insights on MWP (Motivation Example) 
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Warps < MWP 

Warps > MWP 

No performance 
improvement 

MWP 

Warps 

Warps 

MWP 



  We are currently developing more systematic approach 
  By using the metrics that we proposed in this work 

  Calculated CPI value indicates how optimized the code is 
  CPI per warp near 4 is the upper-bound 

  The model provides the upper limit of # of active warps for a 
given application that fully utilizes the processor resources 

  Increasing the # of warps when N is smaller than MWP, CWP 

  Trade-off 
  More register allocation vs. More computation instructions 

  Traditionally, if the optimization on the thread decreases the 
occupancy, that optimization is unlikely to be performed 

  However, if the model predicts that higher occupancy does 
not improve the performance, then that optimization can be 
applied without performance degradation 

Programming 
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Limitations of the Model 
  Cache misses 

  Current analytical model does not consider cache miss penalties 

  Divergent branches 
  Double counting the number of instructions in both path 
  Provides the upper limit for the execution time 
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  Graphics Applications 
  Not modeling texture cache, texture processing 

  Data transfer time between CPU and GPU 
  The analytical work models the GPU kernel execution only 

  Considers total average execution time 
  No time-phase behavior 



  Micro benchmarks 
  Exact number of instructions for different arithmetic intensity is known 

How to use the model (I) 
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  Inputs to the model 
  Thread/block configuration 

  Register/shared memory usage 

  Number of Instructions 

  Memory access type 

Programmer specifies in 
the source code 
Available in the CUDA 
compiler output (.cubin file) 
Source code analysis 
PTX file (compiler output) 

  Merge benchmarks 
  Source and PTX (virtual ISA) analysis 
  Currently, GPU emulator is available 
  Dynamic number of PTX instructions is calculated 



How to use the model (II) 
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  Inputs to the model 
  Thread/block configuration 

  Register/shared memory usage 

  Number of Instructions 

  Memory access type Analyzing memory access 
pattern 

  Analyze the memory access pattern 
  By using the index to the memory function 

  Devised the algorithms for determining the memory access type, and 
the number of memory transactions. 

  Outputs of the model 
  Estimated execution time (cycles), CPI per warp granularity 



  Broken down the memory system from high-level view 
  Maximum possible MWP without bandwidth consideration 
  MWP with bandwidth consideration (Considers #warps, # Transactions, …) 
  Effects of active warps 

  Captured high-level concepts  with careful interactions 

Memory System 
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Transaction #1 (Warp1)


Transaction #1 (Warp1)

Transaction #2 (Warp1)


Transaction #N (Warp1)


Transaction #1 (Warp 2)


Transaction #1 (Warp 2)


Departure delay 

Departure delay 

Memory 
Departure delay 

Warp2


Warp2

Warp3


Warp1


TIME 
Memory Latency


Warp1


Warp3

Coalesced 

Departure delay 

Uncoalesced 

Coalesced 

Uncoalesced 



Synchronization effects 

1 1 

3 
2 

4 

2 
3 

4 
3 

1 
2 

4 

1 
2 

3 
4 

Additional delay  

Synchronization Synchronization 
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  Extra cycles are calculated by knowing the value of MWP      
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  Barrier instruction causes extra waiting cycles 
  Warps inside one SM are synchronized 

No synchronization 


