
An Analytical Model for a GPU Architecture with
Memory-level and Thread-level Parallelism
Awareness

Sunpyo Hong, Hyesoon Kim

Outline

  Background

  Model

  Results

  Conclusion

2

Overview of GPU Architecture

  Software-managed cache

  SIMD Execution Unit inside SM

3

SIMD Execution Unit

 T T T T T T T T

SIMD Execution Unit

 T T T T

Warp
  Warp is the basic unit of execution

  A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

One warp

Sources ready

4

One warp One warp

Inst 1
Inst 2
Inst 3

Sources ready Sources ready
 T T T T T T T T

Finite number of streaming processors

Programmer specifies the # threads

Occupancy
  Shows how many warps are assigned to the SM

  Warps are assigned at block granularity

  Programmer specifies the number of threads per block

100% Occupancy

5

Register
requirements per block

Shared memory
requirements per block

Only one block is allocated

Higher Occupancy
  Better processor utilization

  Hide the memory latency

6

Warp 1

Warp 2

C M C M C M C M

C M C M C M C M

Processor is not utilized

Warp 3

Warp 4

Warp 5

C M C M C M C M

C M C M C M C M

C M C M C M C M
Better
utilization !

High Occupancy = High Performance ?

  Programmers try to optimize programs for occupancy

7

Increase in
occupancy

Performance
improvement

High Occupancy ≠ High Performance

  Programmers try to optimize programs for occupancy

8

  No performance improvement from increased occupancy

Increase in
occupancy

No performance
improvement

Motivation of the Work
  Propose analytical model that can estimate performance

  Why ?

  Optimizing for occupancy may not have impact on the performance

  Occupancy does not consider the application behavior

  To understand the GPU performance and bottlenecks

  Prediction for faster performance simulation
  Other benefits

9

Outline

  Background

  Model

  Results

  Conclusion

10

How is Performance Determined ?

C M No Parallelism

Infinite Parallelism

Finite Parallelism
(Two)

C M C M C

C M
C M

C M
C M

M

C M
C M

C

M

C

M

Saved cycles

Saved cycles

  Memory accesses can be overlapped between warps

  Performance significantly depends on the memory-level parallelism

11

  Performance can be predicted by knowing the amount of
memory-level parallelism

Additional Cycles

MWP
  Memory Warp Parallelism

  Metric of memory-level parallelism

1 1
2 2

3 3
4 4

MWP=4 Four warps are overlapped
during memory accesses

12

  Tightly coupled with DRAM system

  Memory latency, bandwidth, memory access type

  Maximum number of warps that can overlap memory accesses

Memory Access Type

Coalesced memory access type

13

One memory transaction

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread N

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr N

Thread 2 Thread 3 Thread 4 Thread NThread 1

Multiple memory transactions

Addr 1 Addr 10 Addr 2 Addr 20 Addr N

One warp generates a memory request

Uncoalesced memory access type

- More processing cycles for the uncoalesced case

One warp

Memory System Model

SM

SM

SM

Memory Core

Bandwidth
Departure delay

Warp2

Warp2
Warp3

Warp1

  Each SM has a simple queue and consumes an equal bandwidth

TIME
Memory Latency

Warp1

Warp3

14

  MWP is determined by #Active SMs, #Active warps, Bandwidth,
 Types of memory accesses (Coalesced, Uncoalesced)

Coalesced

Departure delay

Uncoalesced

CWP

1 1 3
2 4 2

3
4

CWP = 4

MWP = 2

Memory
Waiting period

  Computation Warp Parallelism

  Analogous concept to MWP

15

  Number of warps that execute instructions during one memory access
period

  Three scenarios can occur depending on the MWP and CWP
relationship

(1) When MWP ≤ CWP

1 1 3 5 7
2 4 6 8 2

3
4

5
6

7
8

MWP=2, N = 8 (Number of warps)

CWP=4

2 Computation + 4 Memory

  Computation cycles are hidden by memory waiting periods

  Overall performance is dominated by the memory cycles

16

(MWP=2, N = 8)

(2) When MWP > CWP

1 1

3

5

7

2

4

6

8

2
3

4
5

6
7

8

8 Computation + 1 Memory

  Memory accesses are mostly hidden due to high MWP

  Overall performance is dominated by the computation cycles

17

MWP=8 N = 8 (Number of warps)

(MWP=8, N = 8)

(3) Not Enough Warps

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

  MWP is limited by the number of active warps per SM

Two warps

18

Idle cycles

  Increasing the number of warps will increase the processor utilization

  The analytical model is inside the paper

Outline

  Background

  Model

  Results

  Conclusion

19

Evaluation Methodology

20

GPU Model 8800GTX FX5600 8800GT GTX280
Number of SMs 16 16 14 30

(SP) Processor Cores 128 128 112 240

Processor Clock 1.35 GHz 1.35GHz 1.5 GHz 1.3 GHz

Memory Size 768 MB 1.5 GB 512 MB 1 GB

Memory Bandwidth 86.4 GB/s 76.8 GB/s 57.6 GB/s 141.7 GB/s

Computing Version 1 1 1.1 1.3

  Micro benchmarks are devised to obtain the memory parameters
  Memory latency, departure delay

  Merge benchmarks
  Execution time, CPI compared

  Model inputs
  Number of instructions, memory type, thread/block configuration,
memory parameters

Evaluated Systems

Micro Benchmarks

 Parameters FX5600 GTX280
 Memory latency 420 450
 Departure delay
 uncoalesced 10 40

 Departure delay
 coalesced 4 4

Memory Model Parameters

21

Coalesced

Uncoalesced

  Coalesced, uncoalesced memory types

  Ratio of memory to computation instructions is varied

Merge Benchmarks

  Merge benchmark performance estimation

  The prediction closely follows the actual execution

  Two types of execution behavior are predicted

22

CPI Comparison

23

  CPI comparison between the model and the actual execution

GTX280 8800GT Overall 13.3 % error

Outline

  Background

  Model

  Results

  Conclusion

24

Conclusions

  Introduced MWP, CWP metrics that determine the performance

  Simplified the complex memory operations

25

  Prediction
  For Micro benchmarks, the prediction error is 5.4%
  For Merge benchmarks, the prediction error is 13.3%

  First analytical model that calculates the execution cycles for GPU

  Future research
  Help providing more systematic approaches for optimizing GPGPU
applications

  Better understanding of the performance aspects of the GPU
architecture

Thank you

26

Questions ?

27

Backup Slides

28

Performance
improvement

Insights on MWP (Motivation Example)

29

Warps < MWP

Warps > MWP

No performance
improvement

MWP

Warps

Warps

MWP

  We are currently developing more systematic approach
  By using the metrics that we proposed in this work

  Calculated CPI value indicates how optimized the code is
  CPI per warp near 4 is the upper-bound

  The model provides the upper limit of # of active warps for a
given application that fully utilizes the processor resources

  Increasing the # of warps when N is smaller than MWP, CWP

  Trade-off
  More register allocation vs. More computation instructions

  Traditionally, if the optimization on the thread decreases the
occupancy, that optimization is unlikely to be performed

  However, if the model predicts that higher occupancy does
not improve the performance, then that optimization can be
applied without performance degradation

Programming

30

Limitations of the Model
  Cache misses

  Current analytical model does not consider cache miss penalties

  Divergent branches
  Double counting the number of instructions in both path
  Provides the upper limit for the execution time

31

  Graphics Applications
  Not modeling texture cache, texture processing

  Data transfer time between CPU and GPU
  The analytical work models the GPU kernel execution only

  Considers total average execution time
  No time-phase behavior

  Micro benchmarks
  Exact number of instructions for different arithmetic intensity is known

How to use the model (I)

32

  Inputs to the model
  Thread/block configuration

  Register/shared memory usage

  Number of Instructions

  Memory access type

Programmer specifies in
the source code
Available in the CUDA
compiler output (.cubin file)
Source code analysis
PTX file (compiler output)

  Merge benchmarks
  Source and PTX (virtual ISA) analysis
  Currently, GPU emulator is available
  Dynamic number of PTX instructions is calculated

How to use the model (II)

33

  Inputs to the model
  Thread/block configuration

  Register/shared memory usage

  Number of Instructions

  Memory access type Analyzing memory access
pattern

  Analyze the memory access pattern
  By using the index to the memory function

  Devised the algorithms for determining the memory access type, and
the number of memory transactions.

  Outputs of the model
  Estimated execution time (cycles), CPI per warp granularity

  Broken down the memory system from high-level view
  Maximum possible MWP without bandwidth consideration
  MWP with bandwidth consideration (Considers #warps, # Transactions, …)
  Effects of active warps

  Captured high-level concepts with careful interactions

Memory System

34

Transaction #1 (Warp1)

Transaction #1 (Warp1)
Transaction #2 (Warp1)

Transaction #N (Warp1)

Transaction #1 (Warp 2)

Transaction #1 (Warp 2)

Departure delay

Departure delay

Memory
Departure delay

Warp2

Warp2
Warp3

Warp1

TIME
Memory Latency

Warp1

Warp3
Coalesced

Departure delay

Uncoalesced

Coalesced

Uncoalesced

Synchronization effects

1 1

3
2

4

2
3

4
3

1
2

4

1
2

3
4

Additional delay

Synchronization Synchronization

1 1

3
2

4

2
3

4
3

1
2

4

1
2

3
4

  Extra cycles are calculated by knowing the value of MWP

35

  Barrier instruction causes extra waiting cycles
  Warps inside one SM are synchronized

No synchronization

