
An Analytical Model for a GPU Architecture with
Memory-level and Thread-level Parallelism
Awareness

Sunpyo Hong, Hyesoon Kim

Outline

  Background

  Model

  Results

  Conclusion

2

Overview of GPU Architecture

  Software-managed cache

  SIMD Execution Unit inside SM

3

SIMD Execution Unit

 T T T T T T T T

SIMD Execution Unit

 T T T T

Warp
  Warp is the basic unit of execution

  A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

One warp

Sources ready

4

One warp One warp

Inst 1
Inst 2
Inst 3

Sources ready
 Sources ready

 T T T T T T T T

Finite number of streaming processors

Programmer specifies the # threads

Occupancy
  Shows how many warps are assigned to the SM

  Warps are assigned at block granularity

  Programmer specifies the number of threads per block

100% Occupancy

5

Register
requirements per block

Shared memory
requirements per block

Only one block is allocated

Higher Occupancy
  Better processor utilization

  Hide the memory latency

6

Warp 1

Warp 2

C M C M C M C M

C M C M C M C M

Processor is not utilized

Warp 3

Warp 4

Warp 5

C M C M C M C M

C M C M C M C M

C M C M C M C M
Better
utilization !

High Occupancy = High Performance ?

  Programmers try to optimize programs for occupancy

7

Increase in
occupancy

Performance
improvement

High Occupancy ≠ High Performance

  Programmers try to optimize programs for occupancy

8

  No performance improvement from increased occupancy

Increase in
occupancy

No performance
improvement

Motivation of the Work
  Propose analytical model that can estimate performance

  Why ?

  Optimizing for occupancy may not have impact on the performance

  Occupancy does not consider the application behavior

  To understand the GPU performance and bottlenecks

  Prediction for faster performance simulation
  Other benefits

9

Outline

  Background

  Model

  Results

  Conclusion

10

How is Performance Determined ?

C M No Parallelism

Infinite Parallelism

Finite Parallelism
(Two)

C M C M C

C M
C M

C M
C M

M

C M
C M

C

M

C

M

Saved cycles

Saved cycles

  Memory accesses can be overlapped between warps

  Performance significantly depends on the memory-level parallelism

11

  Performance can be predicted by knowing the amount of
memory-level parallelism

Additional Cycles

MWP
  Memory Warp Parallelism

  Metric of memory-level parallelism

1 1
2 2

3 3
4 4

MWP=4
 Four warps are overlapped
during memory accesses

12

  Tightly coupled with DRAM system

  Memory latency, bandwidth, memory access type

  Maximum number of warps that can overlap memory accesses

Memory Access Type

Coalesced memory access type

13

One memory transaction

Thread 1
 Thread 2
 Thread 3
 Thread 4
 Thread 5
 Thread 6
 Thread N

Addr 1
 Addr 2
 Addr 3
 Addr 4
 Addr 5
 Addr 6
 Addr N

Thread 2
 Thread 3
 Thread 4
 Thread N
Thread 1

Multiple memory transactions

Addr 1
 Addr 10
 Addr 2
 Addr 20
 Addr N

One warp generates a memory request

Uncoalesced memory access type

- More processing cycles for the uncoalesced case

One warp

Memory System Model

SM

SM

SM

Memory Core

Bandwidth
Departure delay

Warp2

Warp2

Warp3

Warp1

  Each SM has a simple queue and consumes an equal bandwidth

TIME
Memory Latency

Warp1

Warp3

14

  MWP is determined by #Active SMs, #Active warps, Bandwidth,
 Types of memory accesses (Coalesced, Uncoalesced)

Coalesced

Departure delay

Uncoalesced

CWP

1 1 3
2 4 2

3
4

CWP = 4

MWP = 2

Memory
Waiting period

  Computation Warp Parallelism

  Analogous concept to MWP

15

  Number of warps that execute instructions during one memory access
period

  Three scenarios can occur depending on the MWP and CWP
relationship

(1) When MWP ≤ CWP

1 1 3 5 7
2 4 6 8 2

3
4

5
6

7
8

MWP=2, N = 8 (Number of warps)

CWP=4

2 Computation + 4 Memory

  Computation cycles are hidden by memory waiting periods

  Overall performance is dominated by the memory cycles

16

(MWP=2, N = 8)

(2) When MWP > CWP

1 1

3

5

7

2

4

6

8

2
3

4
5

6
7

8

8 Computation + 1 Memory

  Memory accesses are mostly hidden due to high MWP

  Overall performance is dominated by the computation cycles

17

MWP=8 N = 8 (Number of warps)

(MWP=8, N = 8)

(3) Not Enough Warps

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

  MWP is limited by the number of active warps per SM

Two warps

18

Idle cycles

  Increasing the number of warps will increase the processor utilization

  The analytical model is inside the paper

Outline

  Background

  Model

  Results

  Conclusion

19

Evaluation Methodology

20

GPU Model 8800GTX FX5600 8800GT GTX280
Number of SMs 16 16 14 30

(SP) Processor Cores 128 128 112 240

Processor Clock 1.35 GHz 1.35GHz 1.5 GHz 1.3 GHz

Memory Size 768 MB 1.5 GB 512 MB 1 GB

Memory Bandwidth 86.4 GB/s 76.8 GB/s 57.6 GB/s 141.7 GB/s

Computing Version 1 1 1.1 1.3

  Micro benchmarks are devised to obtain the memory parameters
  Memory latency, departure delay

  Merge benchmarks
  Execution time, CPI compared

  Model inputs
  Number of instructions, memory type, thread/block configuration,
memory parameters

Evaluated Systems

Micro Benchmarks

 Parameters FX5600 GTX280
 Memory latency 420 450
 Departure delay
 uncoalesced 10 40

 Departure delay
 coalesced 4 4

Memory Model Parameters

21

Coalesced

Uncoalesced

  Coalesced, uncoalesced memory types

  Ratio of memory to computation instructions is varied

Merge Benchmarks

  Merge benchmark performance estimation

  The prediction closely follows the actual execution

  Two types of execution behavior are predicted

22

CPI Comparison

23

  CPI comparison between the model and the actual execution

GTX280 8800GT Overall 13.3 % error

Outline

  Background

  Model

  Results

  Conclusion

24

Conclusions

  Introduced MWP, CWP metrics that determine the performance

  Simplified the complex memory operations

25

  Prediction
  For Micro benchmarks, the prediction error is 5.4%
  For Merge benchmarks, the prediction error is 13.3%

  First analytical model that calculates the execution cycles for GPU

  Future research
  Help providing more systematic approaches for optimizing GPGPU
applications

  Better understanding of the performance aspects of the GPU
architecture

Thank you

26

Questions ?

27

Backup Slides

28

Performance
improvement

Insights on MWP (Motivation Example)

29

Warps < MWP

Warps > MWP

No performance
improvement

MWP

Warps

Warps

MWP

  We are currently developing more systematic approach
  By using the metrics that we proposed in this work

  Calculated CPI value indicates how optimized the code is
  CPI per warp near 4 is the upper-bound

  The model provides the upper limit of # of active warps for a
given application that fully utilizes the processor resources

  Increasing the # of warps when N is smaller than MWP, CWP

  Trade-off
  More register allocation vs. More computation instructions

  Traditionally, if the optimization on the thread decreases the
occupancy, that optimization is unlikely to be performed

  However, if the model predicts that higher occupancy does
not improve the performance, then that optimization can be
applied without performance degradation

Programming

30

Limitations of the Model
  Cache misses

  Current analytical model does not consider cache miss penalties

  Divergent branches
  Double counting the number of instructions in both path
  Provides the upper limit for the execution time

31

  Graphics Applications
  Not modeling texture cache, texture processing

  Data transfer time between CPU and GPU
  The analytical work models the GPU kernel execution only

  Considers total average execution time
  No time-phase behavior

  Micro benchmarks
  Exact number of instructions for different arithmetic intensity is known

How to use the model (I)

32

  Inputs to the model
  Thread/block configuration

  Register/shared memory usage

  Number of Instructions

  Memory access type

Programmer specifies in
the source code
Available in the CUDA
compiler output (.cubin file)
Source code analysis
PTX file (compiler output)

  Merge benchmarks
  Source and PTX (virtual ISA) analysis
  Currently, GPU emulator is available
  Dynamic number of PTX instructions is calculated

How to use the model (II)

33

  Inputs to the model
  Thread/block configuration

  Register/shared memory usage

  Number of Instructions

  Memory access type Analyzing memory access
pattern

  Analyze the memory access pattern
  By using the index to the memory function

  Devised the algorithms for determining the memory access type, and
the number of memory transactions.

  Outputs of the model
  Estimated execution time (cycles), CPI per warp granularity

  Broken down the memory system from high-level view
  Maximum possible MWP without bandwidth consideration
  MWP with bandwidth consideration (Considers #warps, # Transactions, …)
  Effects of active warps

  Captured high-level concepts with careful interactions

Memory System

34

Transaction #1 (Warp1)

Transaction #1 (Warp1)

Transaction #2 (Warp1)

Transaction #N (Warp1)

Transaction #1 (Warp 2)

Transaction #1 (Warp 2)

Departure delay

Departure delay

Memory
Departure delay

Warp2

Warp2

Warp3

Warp1

TIME
Memory Latency

Warp1

Warp3

Coalesced

Departure delay

Uncoalesced

Coalesced

Uncoalesced

Synchronization effects

1 1

3
2

4

2
3

4
3

1
2

4

1
2

3
4

Additional delay

Synchronization Synchronization

1 1

3
2

4

2
3

4
3

1
2

4

1
2

3
4

  Extra cycles are calculated by knowing the value of MWP

35

  Barrier instruction causes extra waiting cycles
  Warps inside one SM are synchronized

No synchronization

