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Overview of GPU Architecture 

  Software-managed cache 

  SIMD Execution Unit inside SM 
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SIMD Execution Unit 
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Warp 
  Warp is the basic unit of execution 

  A group of threads (e.g. 32 threads for the Tesla GPU architecture) 

Warp Execution 

One warp 

Sources ready
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One warp One warp 

Inst 1 
Inst 2 
Inst 3 

Sources ready Sources ready
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Finite number of streaming processors

Programmer specifies the # threads



Occupancy 
  Shows how many warps are assigned to the SM 

  Warps are assigned at block granularity 

  Programmer specifies the number of threads per block 

100% Occupancy  
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Register  
requirements per block 

Shared memory 
requirements per block 

Only one block is allocated  



Higher Occupancy 
  Better processor utilization 

  Hide the memory latency 
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High Occupancy = High Performance ? 

  Programmers try to optimize programs for occupancy 
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Increase in 
occupancy 

Performance 
improvement 



High Occupancy ≠ High Performance 

  Programmers try to optimize programs for occupancy 
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  No performance improvement from increased occupancy 

Increase in 
occupancy 

No performance 
improvement 



Motivation of the Work 
  Propose analytical model that can estimate performance 

  Why ? 

  Optimizing for occupancy may not have impact on the performance 

  Occupancy does not consider the application behavior 

  To understand the GPU performance and bottlenecks 

  Prediction for faster performance simulation 
  Other benefits 
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How is Performance Determined ? 

C M No Parallelism 

Infinite Parallelism 

Finite Parallelism 
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Saved cycles 

Saved cycles 

  Memory accesses can be overlapped between warps 

  Performance significantly depends on the memory-level parallelism 
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  Performance can be predicted by knowing the amount of 
memory-level parallelism 

Additional Cycles 



MWP 
  Memory Warp Parallelism 

  Metric of memory-level parallelism  

1 1 
2 2 

3 3 
4 4 

MWP=4  Four warps are overlapped 
during memory accesses 
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  Tightly coupled with DRAM system 

  Memory latency, bandwidth, memory access type 

  Maximum number of warps that can overlap memory accesses  



Memory Access Type 

Coalesced memory access type 
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One memory transaction 

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread N

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr N

Thread 2 Thread 3 Thread 4 Thread NThread 1

Multiple memory transactions 

Addr 1 Addr 10 Addr 2 Addr 20 Addr N

One warp generates a memory request 

Uncoalesced memory access type 

- More processing cycles for the uncoalesced case 

One warp 



Memory System Model 

SM 

SM 

SM 

Memory Core 

Bandwidth 
Departure delay 

Warp2

Warp2
Warp3

Warp1

  Each SM has a simple queue and consumes an equal bandwidth 

TIME 
Memory Latency

Warp1

Warp3
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  MWP is determined by #Active SMs, #Active warps, Bandwidth,  
     Types of memory accesses (Coalesced, Uncoalesced) 

Coalesced 

Departure delay 

Uncoalesced 



CWP 

1 1 3 
2 4 2 

3 
4 

CWP = 4 

MWP = 2 

Memory 
Waiting period

  Computation Warp Parallelism 

  Analogous concept to MWP 
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   Number of warps that execute instructions during one memory access 
period 

  Three scenarios can occur depending on the MWP and CWP 
relationship 



(1) When MWP ≤ CWP 
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MWP=2,   N = 8 (Number of warps) 

CWP=4 

2 Computation + 4 Memory 

  Computation cycles are hidden by memory waiting periods 

  Overall performance is dominated by the memory cycles 
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(MWP=2,   N = 8) 



(2) When MWP > CWP  
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  Memory accesses are mostly hidden due to high MWP 

  Overall performance is dominated by the computation cycles 
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MWP=8 N = 8 (Number of warps) 

(MWP=8,   N = 8) 



(3) Not Enough Warps 

1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 

  MWP is limited by the number of active warps per SM 

Two warps 
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Idle cycles 

  Increasing the number of warps will increase the processor utilization 

  The analytical model is inside the paper 
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Evaluation Methodology 
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GPU Model  8800GTX FX5600 8800GT GTX280 
Number of SMs 16 16 14 30 

(SP) Processor Cores  128 128 112 240 

Processor Clock  1.35 GHz  1.35GHz  1.5 GHz  1.3 GHz  

Memory Size  768 MB  1.5 GB  512 MB  1 GB  

Memory Bandwidth  86.4 GB/s  76.8 GB/s  57.6 GB/s  141.7 GB/s  

Computing Version  1 1 1.1 1.3 

  Micro benchmarks are devised to obtain the memory parameters 
  Memory latency, departure delay 

  Merge benchmarks 
  Execution time, CPI  compared 

  Model inputs 
  Number of instructions, memory type, thread/block configuration, 
memory parameters 

Evaluated Systems 



Micro Benchmarks 

 Parameters FX5600 GTX280 
 Memory latency 420 450 
 Departure delay  
 uncoalesced 10 40 

 Departure delay  
 coalesced 4 4 

Memory Model Parameters 
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Coalesced

Uncoalesced

  Coalesced, uncoalesced memory types 

  Ratio of memory to computation instructions is varied 



Merge Benchmarks 

  Merge benchmark performance estimation 

  The prediction closely follows the actual execution 

  Two types of execution behavior are predicted 
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CPI Comparison 
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  CPI comparison between the model and the actual execution 

GTX280 8800GT Overall 13.3 % error 
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Conclusions 

  Introduced MWP, CWP metrics that determine the performance 

  Simplified the complex memory operations 
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  Prediction 
  For Micro benchmarks, the prediction error is 5.4% 
  For Merge benchmarks, the prediction error is 13.3% 

  First analytical model that calculates the execution cycles for GPU 

  Future research 
  Help providing more systematic approaches for optimizing GPGPU 
applications 

  Better understanding of the performance aspects of the GPU 
architecture 



Thank you 
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Questions ? 
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Performance 
improvement 

Insights on MWP (Motivation Example) 

29 

Warps < MWP 

Warps > MWP 

No performance 
improvement 

MWP 

Warps 

Warps 

MWP 



  We are currently developing more systematic approach 
  By using the metrics that we proposed in this work 

  Calculated CPI value indicates how optimized the code is 
  CPI per warp near 4 is the upper-bound 

  The model provides the upper limit of # of active warps for a 
given application that fully utilizes the processor resources 

  Increasing the # of warps when N is smaller than MWP, CWP 

  Trade-off 
  More register allocation vs. More computation instructions 

  Traditionally, if the optimization on the thread decreases the 
occupancy, that optimization is unlikely to be performed 

  However, if the model predicts that higher occupancy does 
not improve the performance, then that optimization can be 
applied without performance degradation 

Programming 
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Limitations of the Model 
  Cache misses 

  Current analytical model does not consider cache miss penalties 

  Divergent branches 
  Double counting the number of instructions in both path 
  Provides the upper limit for the execution time 
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  Graphics Applications 
  Not modeling texture cache, texture processing 

  Data transfer time between CPU and GPU 
  The analytical work models the GPU kernel execution only 

  Considers total average execution time 
  No time-phase behavior 



  Micro benchmarks 
  Exact number of instructions for different arithmetic intensity is known 

How to use the model (I) 
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  Inputs to the model 
  Thread/block configuration 

  Register/shared memory usage 

  Number of Instructions 

  Memory access type 

Programmer specifies in 
the source code 
Available in the CUDA 
compiler output (.cubin file) 
Source code analysis 
PTX file (compiler output) 

  Merge benchmarks 
  Source and PTX (virtual ISA) analysis 
  Currently, GPU emulator is available 
  Dynamic number of PTX instructions is calculated 



How to use the model (II) 
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  Inputs to the model 
  Thread/block configuration 

  Register/shared memory usage 

  Number of Instructions 

  Memory access type Analyzing memory access 
pattern 

  Analyze the memory access pattern 
  By using the index to the memory function 

  Devised the algorithms for determining the memory access type, and 
the number of memory transactions. 

  Outputs of the model 
  Estimated execution time (cycles), CPI per warp granularity 



  Broken down the memory system from high-level view 
  Maximum possible MWP without bandwidth consideration 
  MWP with bandwidth consideration (Considers #warps, # Transactions, …) 
  Effects of active warps 

  Captured high-level concepts  with careful interactions 

Memory System 

34 

Transaction #1 (Warp1)

Transaction #1 (Warp1)
Transaction #2 (Warp1)

Transaction #N (Warp1)

Transaction #1 (Warp 2)

Transaction #1 (Warp 2)

Departure delay 

Departure delay 

Memory 
Departure delay 

Warp2

Warp2
Warp3

Warp1

TIME 
Memory Latency

Warp1

Warp3
Coalesced 

Departure delay 

Uncoalesced 

Coalesced 

Uncoalesced 



Synchronization effects 
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  Extra cycles are calculated by knowing the value of MWP      
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  Barrier instruction causes extra waiting cycles 
  Warps inside one SM are synchronized 

No synchronization 


