
Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Rigel:
An Architecture and Scalable Programming

Interface for a 1000-core Accelerator

John H. Kelm, Daniel R. Johnson,
Matthew R. Johnson, Neal C. Crago, William Tuohy,

Aqeel Mahesri*, Steven S. Lumetta,
Matthew I. Frank†, Sanjay J. Patel

*The author is now with NVIDIA.
† The author is now with Intel.

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Accelerated Computing: Today

• Contemporary Accelerators: GPUs, Cell, Larrabee
• Challenges:

1. Inflexible programming models
2. Lack of conventional memory model
3. Hard to scale irregular parallel apps

Effect on Development: Unattractive time to solution

2John H. Kelm

Programmable accelerator: HW entity designed to
provide advantages for a class of apps including:
higher performance, lower power, or lower unit
cost relative to a general-purpose CPU.

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Accelerated Computing: Tomorrow

• Why research accelerators?
– Insight into future general-purpose CMPs

– Challenges: Performance vs. programmer effort

• Accelerator Trend: Integration over time

3

CPU

MEM

GPU

MEM

Past… …Present… …Future?

CPU
MEM

GPU
MEM

CPU?

Accelerator?
GPU?

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Accelerated Computing: Metrics

• Enable new platforms

• Open new markets

• Enable new apps
4

Challenges lead to:
• FLOPS/$ (area)

• FLOPS/Watt (power)

• FLOPS/Programmer Effort

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Context: Project Orion

5

Applications, Programming Environments,
and Architecture for 1000-core Parallelism

Software Tools 2

Programming
Environments

Illinois
Image
Formation and
Processing

Applications
1000-core

Architecture

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Rigel Design Goals

• What: Future programming models
– Apps and models may not exist yet

– We have ideas (visual computing), but who knows?

– Flexible design easier to retarget

• How: Focus on scalability, programmer effort
– Room to play: Raised HW/SW interface

– Focusing design effort: Five Elements

6John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Outline
• Motivation

• Rigel architecture

• Elements in context of Rigel architecture

• Evaluation:
– Area and power

– Scalability

– SW Task management

• Future work and conclusions

7John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Core I$Core I$Core I$Core I$

Rigel Architecture: Cluster View

• Basic building block

• Eight 32b RISC cores

• Per-core SP FPUs

• 64 kB shared cache

• Cache line buffer

8

Core I$

Tile Interface

Tile
Interconnect

Core I$Core I$Core I$

Cluster Cache

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

John H. Kelm

• Cluster caches not HW coherent (8 MB total)

• G$ fronts mem. controllers (4 MB total)

• Uniform cache access

Rigel Architecture: Full Chip View

8 Tiles Per Chip
16 Clusters per Tile

8x8 Multistage CrossbarGlobal Interconnect

Global Cache Banks G$ G$ G$ G$ G$ G$ G$ G$

GDDR
DRAM

GDDR
DRAM

GDDR
DRAM

GDDR
DRAM

8 GDDR Channels

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Design Elements

• Challenges in accelerator computing

• FLOPS/dev. effort Difficult to quantify
• Guiding our 1000-core architecture

• Room to Play: Raising the HW/SW interface

John H. Kelm 10

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Design Elements

1. Execution Model: ISA, SIMD vs. MIMD, VLIW vs. OoOE, MT

2. Memory Model: Caches vs. scratchpad, ordering, coherence

3. Work Distribution: Scheduling, spectrum of SW/HW choices

4. Synchronization: Scalability, influence on prog. model

5. Locality Management

– Moving data costs perf. and power

– Balance: dev. effort, compiler, runtime, HW

11John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Element 1: Execution Model

• Tradeoff 1: MIMD vs. SIMD [Mahesri MICRO’08]

– Irregular data parallelism

– Task parallelism

• Tradeoff 2: Latency vs. Throughput [Azizi DasCMP’08]

– Simple in-order cores

• Tradeoff 3: Full RISC ISA vs. Specialized Cores
– Complete ISA conventional code generation

– Wide range of apps

12John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Element 2: Memory Model

• Tradeoff 1: Single vs. multiple address space

• Tradeoff 2: Hardware caches vs. scratchpads
– Hardware exploits locality

– Software manages global sharing

• Tradeoff 3: Hierarchical vs. Distributed (NUCA)
– Cluster cache/global cache hierarchy

– ISA provides local/global mem. Operations

– Non-uniformity Programmer effort

13John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Some Results: Scalability

14

• Based on cycle-accurate, execution-driven simulation
• Library and run-time system code simulated
• Regular C code + parallel library, standard C compiler

John H. Kelm

0x

20x

40x

60x

80x

100x

120x

dmm heat kmeans mri gjk cg sobel

Sp
ee

du
p

vs
. 1

 C
lu

st
er

16 Clusters (128 Cores) 32 Clusters (256 Cores)

64 Clusters (512 Cores) 128 Clusters (1024 Cores)

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Element 3: Work Distribution

• Tradeoff (Spectrum): HW vs. SW Implementation
• SW task management: Hierarchical queues
• Flexible policies + little specialized HW

15

Global Task Queue
@Global Cache

Local Task Queue
@Cluster Caches

Core
Dequeue

Enqueue

John H. Kelm

Rigel Cluster

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Work Distribution: Rigel Task Model

16

• < 5% overhead for most data-parallel workloads
• < 15% for most irregular data-parallel workloads
• Task lengths: 100’s-100k instructions

60%
65%
70%
75%
80%
85%
90%
95%

100%

12
8

25
6

51
2

10
24 12

8
25

6
51

2
10

24 12
8

25
6

51
2

10
24 12

8
25

6
51

2
10

24 12
8

25
6

51
2

10
24 12

8
25

6
51

2
10

24

dmm heat kmeans mri gjk cg

Pe
r-

Ta
sk

 O
ve

rh
ea

d

Task Execution Enqueue Costs Dequeue Cost

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Element 4: Synchronization

• Uses of coherence mechanisms:
1. Control synchronization

2. Data sharing

• Broadcast update
– Use cases: flags and barriers

– Reduce contention from polling

– Case Study: 2x speedup for conjugate gradient (CG)

• Atomic primitives (example)

17John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Core0
Core1
Core2

Core0
Core1
Core2

Element 4: Atomic Primitives

18

Conventional
Multiprocessor

Rigel

Cache-to-cache
transfer

 Time

Perform at
Global Cache

(point of coherence)

1. Network
Latency

4. Operation
Execution
(atom.inc)

2. Overlapped
Latency

3. Exposed
Latency

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Evaluation: Atomic Operations

19

K-means Clustering
• Need global histogramming
• With G$ atomics Pipelined in network
• Without atomics Exposed transfer latency

John H. Kelm

0

0.2

0.4

0.6

0.8

1

128 256 512 1024

Sp
ee

du
p

Atomics @ G$ (baseline) Atomics @ core

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

So, Can We Build It?

20

Gcache
30mm2

(10%)

Other Logic
30mm2

(9%)

Overhead
53mm2

(17%) Cluster Cache
SRAM 75mm2

(23%)
Logic: Core +

CCache)
112mm2 (35%)

Register Files
20mm2 (6%)

Clusters
207mm2

(67%)

• RTL synthesis results + memory compiler + datasheets
• Targeting 45nm process @ 1.2 GHz
• 320 mm2 total die area, <100W average power
• Estimate FLOPS/W and FLOPS/mm2 match or exceed GPUs

John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Current and Future Work

• RTL implementation

• Coherence and memory model [Kelm et al. PACT’09]

• Other programming models

• Multi-threading (1-4 threads)

• Element Five: Locality Management

21John H. Kelm

Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Conclusions

• FLOPS/Dev. Effort Elements can drive design
• Software coherence viable approach

• Task management requires little HW

• 1000-core accelerator is feasible
– Area/performance: 8 GFLOPS/mm2 @ ~100W

– Programmability: Task API + MIMD execution

22John H. Kelm

	Rigel:�An Architecture and Scalable Programming Interface for a 1000-core Accelerator
	Accelerated Computing: Today
	Accelerated Computing: Tomorrow
	Accelerated Computing: Metrics
	Context: Project Orion
	Rigel Design Goals
	Outline
	Rigel Architecture: Cluster View
	Rigel Architecture: Full Chip View
	Design Elements
	Design Elements
	Element 1: Execution Model
	Element 2: Memory Model
	Some Results: Scalability
	Element 3: Work Distribution
	Work Distribution: Rigel Task Model
	Element 4: Synchronization
	Element 4: Atomic Primitives
	Evaluation: Atomic Operations
	So, Can We Build It?
	Current and Future Work
	Conclusions

