Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Rigel.
An Architecture and Scalable Programming
Interface for a 1000-core Accelerator

John H. Kelm, Daniel R. Johnson,

Matthew R. Johnson, Neal C. Crago, William Tuohy,
Ageel Mahesri’, Steven S. Lumetta,

Matthew I. Frank™, Sanjay J. Patel

*The author is now with NVIDIA.
" The author is now with Intel.

Qi_gel T I IZW} I N O I S

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Accelerated Computing: Today

Programmable accelerator: HW entity designed to
provide advantages for a class of apps including:
higher performance, lower power, or lower unit
cost relative to a general-purpose CPU.

e Contemporary Accelerators: GPUs, Cell, Larrabee
Challenges:

1. Inflexible programming models
2. Lack of conventional memory model
3. Hard to scale irregular parallel apps

Effect on Development: Unattractive time to solution

Qigel][ILLINOLS John H. Kelm

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Accelerated Computing: Tomorrow

e Why research accelerators?
— Insight into future general-purpose CMPs
— Challenges: Performance vs. programmer effort

e Accelerator Trend: Integration over time

Past... ...Present... ...Future?

o

CPU?
GPU?

Accelerator?

I LLEI N OIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

=igel B

John H. Kelm 3

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Accelerated Computing: Metrics

Challenges lead to:
 FLOPS/S (area)
 FLOPS/Watt (power)
 FLOPS/Programmer Effort

 Enable new platforms

* Open new markets

 Enable new apps
Qigel][ILLINOIS John H. Kelm 4

IIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Context: Project Orion

Applications, Programming Environments,
and Architecture for 1000-core Parallelism

TN
N~

IHlinois

IMREET; | mees

I
I

I

I

I

I

I

I

I

: Formation and
: Processing
I

I

I

I

I

I

I

I

l

~

Applications

Programming
Environments

1000-core
\ Archltecture

John H. Kelm 5

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Rigel Design Goals

 What: Future programming models
— Apps and models may not exist yet
— We have ideas), but who knows?
— Flexible design = easier to retarget

* How: Focus on scalability, programmer effort
— Room to play: Raised HW/SW interface
— Focusing design effort: Five Elements

Qigel][ILLINOLS John H. Kelm 6

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Outline

* Rigel architecture
in context of Rigel architecture

e Evaluation:
— Area and power
— Scalability
— SW Task management

e Future work and conclusions

| Qigel][ILLINOILS John H. Kelm

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Rigel Architecture: Cluster View

e Basic building block
e Eight 32b RISC cores
* Per-core SP FPUs
Cluster Cache e 64 kB shared cache

| Tile Interface o CaChe ||ne bUffer

Tile
Interconnect

ngel }NNE{;W&.LL.}O.SEnmgcm}mssu John H. Kelm

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Rigel Architecture: Full Chip View

e Cluster caches not HW coherent (8 VB total)
e GS fronts mem. controllers (4 VIB total)
e Uniform cache access

8 Tiles Per Chip
16 Clusters per Tile

Global Interconnect 8x8 Multistage Crossbar

Global Cache Banks _I—I—I—I—I—I—I—

8 GDDR Channels i GDDR

DRAM DRAM

Qi_ 8el ‘ I I;n} IOSI\UT O I SN John H. Kelm

Presented at the 36" Annual International Symposium on Computer Architecture June 22"9, 2009

Design Elements

* Challenges in accelerator computing

* FLOPS/deuv. effort = Difficult to quantify

e Guiding our 1000-core architecture

e Room to Play: Raising the HW/SW interface

Qigel [ILLINOIS John H. Kelm

NNNNNNNNNNNNNNNNNNNNNNNNNNN -CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Design Elements

1. Execution Model: ISA, SIMD vs. MIMD, VLIW vs. OoOE, MT
Memory Model: Caches vs. scratchpad, ordering, coherence
3. Work Distribution: Scheduling, spectrum of SW/HW choices
. Scalability, influence on prog. model
5. Locality Management
— Moving data costs perf. and power
— Balance: dev. effort, compiler, runtime, HW

Qigel][ILLINOILS John H. Kelm 11

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Element 1: Execution Model

e Tradeoff 1: MIMID vs. SIMD [mvahesri MIcRO08]
— Irregular data parallelism
— Task parallelism

* Tradeoff 2: Latency vs. Throughput [azizi pascvpog]
— Simple in-order cores

e Tradeoff 3: Full RISC ISA vs. Specialized Cores

— Complete ISA = conventional code generation
— Wide range of apps

ILLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

John H. Kelm 12

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Element 2: Memory Model

 Tradeoff 1: Single vs. multiple address space
 Tradeoff 2: Hardware caches vs. scratchpads

— Hardware exploits locality
— Software manages global sharing

* Tradeoff 3: Hierarchical vs. Distributed (NUCA)
— Cluster cache/global cache hierarchy
— ISA provides local/global mem. Operations
— Non-uniformity = Programmer effort

ngel . LLINOIS L

NNNNNNNNNNNNNNNNNNNNNNNNNNN -CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Some Results: Scalability

120x

100x

80x

60x

40x

S
]
]
7]
3
O
i
v
>
Q.
=]
©
]
(]
Q
(%)

20x

Ox

dmm heat kmeans mri gjk cg sobel
M 16 Clusters (128 Cores) M 32 Clusters (256 Cores)

i 64 Clusters (512 Cores) m 128 Clusters (1024 Cores)

e Based on cycle-accurate, execution-driven simulation
e Library and run-time system code simulated
e Regular C code + parallel library, standard C compiler

ngel ILWEJINOEGS John H. Kelm 14

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Element 3: Work Distribution

Global Task Queue
@Global Cache

““““““““““““

Local Task Queue
@Cluster Caches

éDequeueé

Rigel Cluster

* Tradeoff (Spectrum): HW vs. SW Implementation
 SW task management: Hierarchical queues
e Flexible policies + little specialized HW

Qigel][ILLINOIS John H. Kelm 15

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Work Distribution: Rigel Task Model

100% -

©
@ 95% -
£ 90% -
9 85% -
O 80% -
?:,75%-
= 70% -
S
o 65% -
o
60% -
WO O N TV ONT VOO NT OO NT OO N OO N
NN A NN =" AN AN N A NANWUIANN AN N - N
AN N O NN O 1A/ NN O A/ NN O A/ NN O HAN LN O
i — — i — —
dmm heat kmeans mri gjk cg

M Task Execution M Enqueue Costs W Dequeue Cost

* < 5% overhead for most data-parallel workloads
e < 15% for most irregular data-parallel workloads
 Task lengths: 100’s-100k instructions

gel LLLINOLS i

16

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Synchronization

e Uses of coherence mechanisms:
1. Control synchronization
2. Data sharing
 Broadcast update
— Use cases: flags and barriers
— Reduce contention from polling
— Case Study: 2x speedup for conjugate gradient (CG)

e Atomic primitives (example)

. I LLINOIS John H. Kelm 17

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Element 4: Atomic Primitives

Cache-to-cache
Core, &>

Conventional
transfer

Multiprocessor Core
1

Core,

Core, & Perform at
Rigel Core, uﬁ-g—h Global Cache

- Time 2
1. Network 2. Overlapped 3. Exposed 4. Operation
Latency Latency Latency Execution

ngEl j[ILLINOLS John H. Kelm (atom'inc)18

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Atomic Operations

1

0.8
S

3 06
Q

S 04
(7]

0.2

0

128 256 512 1024
W Atomics @ GS (baseline) B Atomics @ core

K-means Clustering
* Need global histogramming
* With GS atomics = Pipelined in network
e Without atomics = Exposed transfer latency

Qigel][ILLINOILS John H. Kelm 19

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

So, Can We Build It?

Overhead
53mm?
(17%) Cluster Cache

SRAM 75mm?

Other Logic
30mm? (23%)
(9%) Logic: Core +
CCache)
112mm? (35%)

Gcache
30mm?
(10%)

Register Files

20mm? (6%)

e RTL synthesis results + memory compiler + datasheets

e Targeting 45nm process @ 1.2 GHz

e 320 mm? total die area, <100W average power

e Estimate FLOPS/W and FLOPS/mm?2 match or exceed GPUs

Qigel][ILLINOILS John H. Kelm 20

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Current and Future Work

RTL implementation

Coherence and memory model [kelm et al. PACT’09]

Other programming models
Multi-threading (1-4 threads)
Element Five: Locality Management

- Qigel][ILLINOILS John H. Kelm 21

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Conclusions

 FLOPS/Dev. Effort 2 Elements can drive design
e Software coherence viable approach
 Task management requires little HW

e 1000-core accelerator is feasible
— Area/performance: 8 GFLOPS/mm? @ ~100W
— Programmability: Task APl + MIMD execution

Qigel j I L L I N O I S John H. Kelm 22

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

	Rigel:�An Architecture and Scalable Programming Interface for a 1000-core Accelerator
	Accelerated Computing: Today
	Accelerated Computing: Tomorrow
	Accelerated Computing: Metrics
	Context: Project Orion
	Rigel Design Goals
	Outline
	Rigel Architecture: Cluster View
	Rigel Architecture: Full Chip View
	Design Elements
	Design Elements
	Element 1: Execution Model
	Element 2: Memory Model
	Some Results: Scalability
	Element 3: Work Distribution
	Work Distribution: Rigel Task Model
	Element 4: Synchronization
	Element 4: Atomic Primitives
	Evaluation: Atomic Operations
	So, Can We Build It?
	Current and Future Work
	Conclusions

