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Accelerated Computing: Today

• Contemporary Accelerators: GPUs, Cell, Larrabee
• Challenges:

1. Inflexible programming models 
2. Lack of conventional memory model
3. Hard to scale irregular parallel apps

Effect on Development: Unattractive time to solution
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Programmable accelerator: HW entity designed to 
provide advantages for a class of apps including: 
higher performance, lower power, or lower unit 
cost relative to a general-purpose CPU.
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Accelerated Computing: Tomorrow

• Why research accelerators?
– Insight into future general-purpose CMPs

– Challenges: Performance vs. programmer effort

• Accelerator Trend: Integration over time

3

CPU

MEM

GPU

MEM

Past… …Present… …Future?

CPU
MEM

GPU
MEM

CPU?

Accelerator?
GPU?

John H. Kelm



Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Accelerated Computing: Metrics

• Enable new platforms

• Open new markets

• Enable new apps
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Challenges lead to:
• FLOPS/$ (area)

• FLOPS/Watt (power)

• FLOPS/Programmer Effort
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Context: Project Orion
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Rigel Design Goals

• What: Future programming models
– Apps and models may not exist yet

– We have ideas (visual computing), but who knows? 

– Flexible design  easier to retarget

• How:  Focus on scalability, programmer effort
– Room to play: Raised HW/SW interface

– Focusing design effort: Five Elements
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Outline
• Motivation

• Rigel architecture

• Elements in context of Rigel architecture

• Evaluation: 
– Area and power

– Scalability

– SW Task management

• Future work and conclusions

7John H. Kelm



Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Core I$Core I$Core I$Core I$

Rigel Architecture: Cluster View

• Basic building block

• Eight 32b RISC cores

• Per-core SP FPUs

• 64 kB shared cache

• Cache line buffer
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• Cluster caches not HW coherent (8 MB total)

• G$ fronts mem. controllers (4 MB total)

• Uniform cache access 

Rigel Architecture: Full Chip View
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Design Elements

• Challenges in accelerator computing

• FLOPS/dev. effort  Difficult to quantify
• Guiding our 1000-core architecture

• Room to Play: Raising the HW/SW interface
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Design Elements

1. Execution Model: ISA, SIMD vs. MIMD, VLIW vs. OoOE, MT

2. Memory Model: Caches vs. scratchpad, ordering, coherence

3. Work Distribution:  Scheduling, spectrum of SW/HW choices

4. Synchronization:  Scalability, influence on prog. model

5. Locality Management

– Moving data costs perf. and power

– Balance: dev. effort, compiler, runtime, HW
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Element 1: Execution Model

• Tradeoff 1: MIMD vs. SIMD [Mahesri MICRO’08]

– Irregular data parallelism

– Task parallelism

• Tradeoff 2: Latency vs. Throughput [Azizi DasCMP’08]

– Simple in-order cores

• Tradeoff 3: Full RISC ISA vs. Specialized Cores
– Complete ISA  conventional code generation

– Wide range of apps
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Element 2: Memory Model

• Tradeoff 1: Single vs. multiple address space

• Tradeoff 2: Hardware caches vs. scratchpads
– Hardware exploits locality

– Software manages global sharing

• Tradeoff 3: Hierarchical vs. Distributed (NUCA)
– Cluster cache/global cache hierarchy

– ISA provides local/global mem. Operations

– Non-uniformity  Programmer effort
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Some Results: Scalability
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• Based on cycle-accurate, execution-driven simulation
• Library and run-time system code simulated
• Regular C code + parallel library, standard C compiler

John H. Kelm
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Element 3: Work Distribution

• Tradeoff (Spectrum): HW vs. SW Implementation
• SW task management: Hierarchical queues
• Flexible policies + little specialized HW

15

Global Task Queue 
@Global Cache

Local Task Queue 
@Cluster Caches

Core
Dequeue

Enqueue

John H. Kelm

Rigel Cluster



Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Work Distribution: Rigel Task Model
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• < 5% overhead for most data-parallel workloads
• < 15% for most irregular data-parallel workloads
• Task lengths: 100’s-100k instructions
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Element 4: Synchronization

• Uses of coherence mechanisms:
1. Control synchronization

2. Data sharing

• Broadcast update
– Use cases: flags and barriers

– Reduce contention from polling

– Case Study: 2x speedup for conjugate gradient (CG)

• Atomic primitives (example)
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Element 4: Atomic Primitives
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Evaluation: Atomic Operations
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K-means Clustering
• Need global histogramming
• With G$  atomics  Pipelined in network
• Without  atomics  Exposed transfer latency
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So, Can We Build It?
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• RTL synthesis results + memory compiler + datasheets
• Targeting 45nm process @ 1.2 GHz 
• 320 mm2 total die area, <100W average power
• Estimate FLOPS/W and FLOPS/mm2 match or exceed GPUs
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Current and Future Work

• RTL implementation

• Coherence and memory model [Kelm et al. PACT’09]

• Other programming models

• Multi-threading (1-4 threads)

• Element Five: Locality Management
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Conclusions

• FLOPS/Dev. Effort Elements can drive design
• Software coherence viable approach

• Task management requires little HW

• 1000-core accelerator is feasible
– Area/performance: 8 GFLOPS/mm2 @ ~100W

– Programmability: Task API + MIMD execution
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