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Accelerated Computing: Today

Programmable accelerator: HW entity designed to
provide advantages for a class of apps including:
higher performance, lower power, or lower unit
cost relative to a general-purpose CPU.

e Contemporary Accelerators: GPUs, Cell, Larrabee
Challenges:

1. Inflexible programming models
2. Lack of conventional memory model
3. Hard to scale irregular parallel apps

Effect on Development: Unattractive time to solution
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Accelerated Computing: Tomorrow

e Why research accelerators?
— Insight into future general-purpose CMPs
— Challenges: Performance vs. programmer effort

e Accelerator Trend: Integration over time

Past... ...Present... ...Future?

o

CPU?
GPU?

Accelerator?
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Accelerated Computing: Metrics

Challenges lead to:
 FLOPS/S (area)
 FLOPS/Watt (power)
 FLOPS/Programmer Effort

 Enable new platforms

* Open new markets

 Enable new apps
Qigel ][ ILLINOIS John H. Kelm 4

IIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN




Presented at the 36" Annual International Symposium on Computer Architecture June 22"4, 2009

Context: Project Orion

Applications, Programming Environments,
and Architecture for 1000-core Parallelism
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Rigel Design Goals

 What: Future programming models
— Apps and models may not exist yet
— We have ideas ), but who knows?
— Flexible design = easier to retarget

* How: Focus on scalability, programmer effort
— Room to play: Raised HW/SW interface
— Focusing design effort: Five Elements

Qigel ][ ILLINOLS John H. Kelm 6

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Presented at the 36% Annual International Symposium on Computer Architecture June 22"4, 2009

Outline

* Rigel architecture
in context of Rigel architecture

e Evaluation:
— Area and power
— Scalability
— SW Task management

e Future work and conclusions
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Rigel Architecture: Cluster View

e Basic building block
e Eight 32b RISC cores
* Per-core SP FPUs
Cluster Cache e 64 kB shared cache

| Tile Interface o CaChe ||ne bUffer

Tile
Interconnect
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Rigel Architecture: Full Chip View

e Cluster caches not HW coherent (8 VB total)
e GS fronts mem. controllers (4 VIB total)
e Uniform cache access

8 Tiles Per Chip
16 Clusters per Tile

Global Interconnect 8x8 Multistage Crossbar

Global Cache Banks _I—I—I—I—I—I—I—

8 GDDR Channels i GDDR

DRAM DRAM
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Design Elements

* Challenges in accelerator computing

* FLOPS/deuv. effort = Difficult to quantify

e Guiding our 1000-core architecture

e Room to Play: Raising the HW/SW interface
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Design Elements

1. Execution Model: ISA, SIMD vs. MIMD, VLIW vs. OoOE, MT
Memory Model: Caches vs. scratchpad, ordering, coherence
3. Work Distribution: Scheduling, spectrum of SW/HW choices
. Scalability, influence on prog. model
5. Locality Management
— Moving data costs perf. and power
— Balance: dev. effort, compiler, runtime, HW
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Element 1: Execution Model

e Tradeoff 1: MIMID vs. SIMD [mvahesri MIcRO08]
— Irregular data parallelism
— Task parallelism

* Tradeoff 2: Latency vs. Throughput [azizi pascvpog]
— Simple in-order cores

e Tradeoff 3: Full RISC ISA vs. Specialized Cores

— Complete ISA = conventional code generation
— Wide range of apps
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Element 2: Memory Model

 Tradeoff 1: Single vs. multiple address space
 Tradeoff 2: Hardware caches vs. scratchpads

— Hardware exploits locality
— Software manages global sharing

* Tradeoff 3: Hierarchical vs. Distributed (NUCA)
— Cluster cache/global cache hierarchy
— ISA provides local/global mem. Operations
— Non-uniformity = Programmer effort
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Some Results: Scalability
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dmm heat kmeans mri gjk cg sobel
M 16 Clusters (128 Cores) M 32 Clusters (256 Cores)

i 64 Clusters (512 Cores) m 128 Clusters (1024 Cores)

e Based on cycle-accurate, execution-driven simulation
e Library and run-time system code simulated
e Regular C code + parallel library, standard C compiler
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Element 3: Work Distribution

Global Task Queue
@Global Cache

““““““““““““

Local Task Queue
@Cluster Caches

éDequeueé

Rigel Cluster

* Tradeoff (Spectrum): HW vs. SW Implementation
 SW task management: Hierarchical queues
e Flexible policies + little specialized HW
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Work Distribution: Rigel Task Model
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M Task Execution M Enqueue Costs W Dequeue Cost

* < 5% overhead for most data-parallel workloads
e < 15% for most irregular data-parallel workloads
 Task lengths: 100’s-100k instructions
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Synchronization

e Uses of coherence mechanisms:
1. Control synchronization
2. Data sharing
 Broadcast update
— Use cases: flags and barriers
— Reduce contention from polling
— Case Study: 2x speedup for conjugate gradient (CG)

e Atomic primitives (example)
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Element 4: Atomic Primitives

Cache-to-cache
Core, &>

Conventional
transfer

Multiprocessor Core
1

Core,

Core, & Perform at
Rigel Core, uﬁ-g—h Global Cache

- Time 2
1. Network 2. Overlapped 3. Exposed 4. Operation
Latency Latency Latency Execution
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Atomic Operations
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K-means Clustering
* Need global histogramming
* With GS atomics = Pipelined in network
e Without atomics = Exposed transfer latency
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So, Can We Build It?

Overhead
53mm?
(17%) Cluster Cache

SRAM 75mm?

Other Logic
30mm? (23%)
(9%) Logic: Core +
CCache)
112mm? (35%)

Gcache
30mm?
(10%)

Register Files

20mm? (6%)

e RTL synthesis results + memory compiler + datasheets

e Targeting 45nm process @ 1.2 GHz

e 320 mm? total die area, <100W average power

e Estimate FLOPS/W and FLOPS/mm?2 match or exceed GPUs
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Current and Future Work

RTL implementation

Coherence and memory model [kelm et al. PACT’09]

Other programming models
Multi-threading (1-4 threads)
Element Five: Locality Management
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Conclusions

 FLOPS/Dev. Effort 2 Elements can drive design
e Software coherence viable approach
 Task management requires little HW

e 1000-core accelerator is feasible
— Area/performance: 8 GFLOPS/mm? @ ~100W
— Programmability: Task APl + MIMD execution
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