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Accelerated Computing: Today

• Contemporary Accelerators: GPUs, Cell, Larrabee
• Challenges:

1. Inflexible programming models 
2. Lack of conventional memory model
3. Hard to scale irregular parallel apps

Effect on Development: Unattractive time to solution
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Programmable accelerator: HW entity designed to 
provide advantages for a class of apps including: 
higher performance, lower power, or lower unit 
cost relative to a general-purpose CPU.
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Accelerated Computing: Tomorrow

• Why research accelerators?
– Insight into future general-purpose CMPs

– Challenges: Performance vs. programmer effort

• Accelerator Trend: Integration over time
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Accelerated Computing: Metrics

• Enable new platforms

• Open new markets

• Enable new apps
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Challenges lead to:
• FLOPS/$ (area)

• FLOPS/Watt (power)

• FLOPS/Programmer Effort
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Context: Project Orion
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Rigel Design Goals

• What: Future programming models
– Apps and models may not exist yet

– We have ideas (visual computing), but who knows? 

– Flexible design  easier to retarget

• How:  Focus on scalability, programmer effort
– Room to play: Raised HW/SW interface

– Focusing design effort: Five Elements
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Outline
• Motivation

• Rigel architecture

• Elements in context of Rigel architecture

• Evaluation: 
– Area and power

– Scalability

– SW Task management

• Future work and conclusions
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Core I$Core I$Core I$Core I$

Rigel Architecture: Cluster View

• Basic building block

• Eight 32b RISC cores

• Per-core SP FPUs

• 64 kB shared cache

• Cache line buffer
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• Cluster caches not HW coherent (8 MB total)

• G$ fronts mem. controllers (4 MB total)

• Uniform cache access 

Rigel Architecture: Full Chip View
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Design Elements

• Challenges in accelerator computing

• FLOPS/dev. effort  Difficult to quantify
• Guiding our 1000-core architecture

• Room to Play: Raising the HW/SW interface

John H. Kelm 10
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Design Elements

1. Execution Model: ISA, SIMD vs. MIMD, VLIW vs. OoOE, MT

2. Memory Model: Caches vs. scratchpad, ordering, coherence

3. Work Distribution:  Scheduling, spectrum of SW/HW choices

4. Synchronization:  Scalability, influence on prog. model

5. Locality Management

– Moving data costs perf. and power

– Balance: dev. effort, compiler, runtime, HW
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Element 1: Execution Model

• Tradeoff 1: MIMD vs. SIMD [Mahesri MICRO’08]

– Irregular data parallelism

– Task parallelism

• Tradeoff 2: Latency vs. Throughput [Azizi DasCMP’08]

– Simple in-order cores

• Tradeoff 3: Full RISC ISA vs. Specialized Cores
– Complete ISA  conventional code generation

– Wide range of apps
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Element 2: Memory Model

• Tradeoff 1: Single vs. multiple address space

• Tradeoff 2: Hardware caches vs. scratchpads
– Hardware exploits locality

– Software manages global sharing

• Tradeoff 3: Hierarchical vs. Distributed (NUCA)
– Cluster cache/global cache hierarchy

– ISA provides local/global mem. Operations

– Non-uniformity  Programmer effort
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Some Results: Scalability
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• Based on cycle-accurate, execution-driven simulation
• Library and run-time system code simulated
• Regular C code + parallel library, standard C compiler
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0x

20x

40x

60x

80x

100x

120x

dmm heat kmeans mri gjk cg sobel

Sp
ee

du
p 

vs
. 1

 C
lu

st
er

16 Clusters (128 Cores) 32 Clusters (256 Cores)

64 Clusters (512 Cores) 128 Clusters (1024 Cores)



Presented at the 36th Annual International Symposium on Computer Architecture June 22nd, 2009

Element 3: Work Distribution

• Tradeoff (Spectrum): HW vs. SW Implementation
• SW task management: Hierarchical queues
• Flexible policies + little specialized HW
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Work Distribution: Rigel Task Model
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• < 5% overhead for most data-parallel workloads
• < 15% for most irregular data-parallel workloads
• Task lengths: 100’s-100k instructions
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Element 4: Synchronization

• Uses of coherence mechanisms:
1. Control synchronization

2. Data sharing

• Broadcast update
– Use cases: flags and barriers

– Reduce contention from polling

– Case Study: 2x speedup for conjugate gradient (CG)

• Atomic primitives (example)
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Element 4: Atomic Primitives
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Evaluation: Atomic Operations
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K-means Clustering
• Need global histogramming
• With G$  atomics  Pipelined in network
• Without  atomics  Exposed transfer latency
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So, Can We Build It?
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• RTL synthesis results + memory compiler + datasheets
• Targeting 45nm process @ 1.2 GHz 
• 320 mm2 total die area, <100W average power
• Estimate FLOPS/W and FLOPS/mm2 match or exceed GPUs
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Current and Future Work

• RTL implementation

• Coherence and memory model [Kelm et al. PACT’09]

• Other programming models

• Multi-threading (1-4 threads)

• Element Five: Locality Management
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Conclusions

• FLOPS/Dev. Effort Elements can drive design
• Software coherence viable approach

• Task management requires little HW

• 1000-core accelerator is feasible
– Area/performance: 8 GFLOPS/mm2 @ ~100W

– Programmability: Task API + MIMD execution
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