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Motivation

Hard errors in logic are an increasing risk
Errors manifest at manufacture time or in field:
–Manufacture: more cores, bigger die -> lower yield
–Field: wearout failure

Large SRAMs (cache) regular, easily protected
–Manufacture: spare lines, field: line disable

Remainder of die (cores) not as easily protected
–Focus on manufacture, but same applies to field

How do we tolerate core defects?
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Tolerating defective cores
Defective core options: disable or salvage
–Disabling wastes entire core even for minor defect
–Salvaging uses redundancy to maintain correctness

Salvage by using redundancy to tolerate a defect
– µarchitectural: use another resource in the core
– Architectural: use another core

Architectural salvaging covers against more defects
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µarchitectural salvaging: 

Natural method of  defect-tolerance
– Both others and we have studied it

Protects only resources w/ intra-core redundancy
– Small-array entry: other entries
– Execution logic: other logic w/ same function
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Architectural core salvaging
Key observation
–In CMP, die must support all instructions, but
–individual cores need not support all instructions

Architectural salvaging
–Threads can be dynamically migrated (swapped) 

between cores to guarantee progress
– On demand context switch (CS)
– Cores with critical defects in exec. can still be used
– Assuming uncore hardware for context state transfer
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Architectural Core Salvaging 
Contributions

Better performance than core disabling
–Most workloads get useful work from defective core

Exploit architectural redundancy
–exceed limitations of µarch. redundancy

Cover > portion of core w/ less invasive technique

µµarch salvaging: max arch salvaging: max 
execexec--unit coverageunit coverage

arch salvaging: demonstrated arch salvaging: demonstrated 
execexec--unit coverageunit coverage
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µarch salvaging: small arrays
Small RAMs, CAMs occupy substantial core area
–Buffers, queues, regfiles: too small for spare arrays
–May protect using spare entries or by reducing size

Covers only memory cells; not decoder, mux, sense amp
memory-cell fraction decreases w/ array size

40%
60%

83%

17%

87%
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Cache array: 64KB 2Cache array: 64KB 2--
way. 1 way. 1 r/wr/w (reference)(reference)

Decode Q: 32 64Decode Q: 32 64--bit bit 
entries. 4 r, 4 wentries. 4 r, 4 w

Reorder buffer: 96 72Reorder buffer: 96 72--bit bit 
entries. 8 r, 4 wentries. 8 r, 4 w

memory cells (redundant)memory cells (redundant) Support logic/wiresSupport logic/wires

Area truly covered can be deceptively low
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µarch salvaging: execution units

Many instruction classes are replicated
–Canonical redundancy example; superscalar hallmark

But less redundancy than might be expected in IA
–Non-replicated instruction may share structure
–Instruction replication != structure redundancy

84%

16%
ExecExec--unit areaunit area

16% of exec area µarch. 
redundant

Most exec area is for non-replicated instructions
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µarch salvaging summary

Small-array + exec coverage:
– ~10% of non-cache core

Not enough µarch redundancy for high coverage

Each structure requires its own salvaging hardware 

Other redundancy needed to obtain high coverage
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Architectural Salvaging

Other cores provide redundancy, cover defects
–Each core needs to know its defects
–If thread needs defective resource:

– Trap and migrate to another core

–O/S and user transparency
– APIC ID swapped between cores along with thread
– Migration occurs using h/w C6 power-state array (few KB)

Overhead and performance
–If defective resource used frequently by all threads

– Fall back to core disabling to avoid migration thrashing
– Places upper bound on performance loss

What is design space (# of cores) for arch. salvaging?
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Core salvaging: simple perf. model
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Salvaging makes sense for CMPs >5 cores
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Arch. salvaging: targeted instructions

“Infrequent” instructions
–Those used by only some applications
–Or used in most applications, but only a few times
–E.g., certain floating point & SIMD instructions

Disallow salvaging “critical” instructions
–Load, store, simple int ALU, branch
–Defect in executing critical inst. -> disable core

Structures used by only infrequent instructions 
are large fraction of execution-unit area

Are there enough infrequent instructions?
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Instruction Occurrence
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Methodology

Modeled architecture: Intel® Core-2™ like
–8 cores; 8 MB shared last-level-cache
–4-issue out-of-order
–Each core: 64KB i-cache, 64KB d-cache, 1MB L2

Assume 1000-cycle thread migration overhead
–Fall back to disabling for 150K cycles if > 2 

migrations in 40K cycles

Workloads: spec00, spec06, server, multimedia
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Core salvaging performance
(8 core die)
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Architectural salvaging coverage

Execution-unit case study:
–uarch covered @ max 16% of execution-unit area
–We show proof-of-concepts for arch. covering 46%
–Accounts for 9% of vulnerable core area vs 3%

Core level:
– µarch covered max 10.6% of core
–Arch covers nearly that much in exec. units
–Combine exe w/ hybrid h/w salvaging (shown in 

paper), cover 21% of vulnerable core area
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Conclusions

Hard errors in logic are an increasing risk
Architectural vs µarch. core salvaging 
–Cover > portion of core w/ less invasive technique
–Cover 46% of execution units vs 16% for µarch
–Covered exec units: 9% of vulnerable core area

Apply salvaging at manufacture or in field

Better performance than core disabling
–Core with minor defect -> nearly full performance
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