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Motivation

e Hard errors in logic are an increasing risk

* Errors manifest at manufacture time or in field:
—Manufacture: more cores, bigger die -> lower yield
—Field: wearout failure

 Large SRAMs (cache) regular, easily protected
—Manufacture: spare lines, field: line disable

* Remainder of die (cores) not as easily protected
—Focus on manufacture, but same applies to field

How do we tolerate core defects?
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Tolerating defective cores

* Defective core options: disable or salvage
—Disabling wastes entire core even for minor defect
—Salvaging uses redundancy to maintain correctness

e Salvage by using redundancy to tolerate a defect
— parchitectural: use another resource in the core
— Architectural: use another core

Architectural salvaging covers against more defects
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uarchitectural salvaging:

e Natural method of defect-tolerance
— Both others and we have studied it

* Protects only resources w/ intra-core redundancy
— Small-array entry: other entries

— Execution logic: other logic w/ same function
perceived parch unarch salvaging area coverage limit

salvaging area coverage = Core area

—Difficult to cover >> 10% of core area

Coverage not as much as might be expected

SPEARS-FACT




Architectural core salvaging
* Key observation

—In CMP, die must support all instructions, but
—individual cores need not support all instructions

* Architectural salvaging

—Threads can be dynamically migrated (swapped)
between cores to guarantee progress

— On demand context switch (CS)
— Cores with critical defects in exec. can still be used
— Assuming uncore hardware for context state transfer
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Low overhead if defective units used infrequently
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Architectural Core Salvaging
Contributions

e Better performance than core disabling
—Most workloads get useful work from defective core

* Exploit architectural redundancy
—exceed limitations of parch. redundancy

e Cover > portion of core w/ less invasive technigue

uarch salvaging: max arch salvaging: demonstrated
exec-unit coverage exec-unit coverage
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Outline

* Introduction

e Limitations of parchitectural salvaging
* Architectural salvaging

 Methodology and performance results

e Conclusion
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uarch salvaging: small arrays

« Small RAMs, CAMs occupy substantial core area
— Buffers, queues, redfiles: too small for spare arrays
—May protect using spare entries or by reducing size
e Covers only memory cells; not decoder, mux, sense amp
* memory-cell fraction decreases w/ array size

Decode Q: 32 64-hit Reorder buffer: 96 72-bit Cache array: 64KB 2-
entries. 4r, 4w entries. 8r, 4w way. 1 r/w (reference)

13% 17%

8/% 83%

|| Support logic/wires

Area truly covered can be deceptively low

memory cells (redundant

SPEARS-FACT



narch salvaging: execution units

 Many instruction classes are replicated
—Canonical redundancy example; superscalar hallmark
e But less redundancy than might be expected in IA
—Non-replicated instruction may share structure

— Instruction replication != structure redundancy
Exec-unit area

16%
* 16% of exec area puarch.

redundant
84%

Most exec area is for non-replicated instructions
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uarch salvaging summary

e Small-array + exec coverage:
— —10% of non-cache core

* Not enough parch redundancy for high coverage
e Each structure requires its own salvaging hardware

e Other redundancy needed to obtain high coverage
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Architectural Salvaging

e Other cores provide redundancy, cover defects
—Each core needs to know its defects

—If thread needs defective resource:
— Trap and migrate to another core

—0/S and user transparency
— APIC ID swapped between cores along with thread
— Migration occurs using h/w C6 power-state array (few KB)

* Overhead and performance

—If defective resource used frequently by all threads
— Fall back to core disabling to avoid migration thrashing
— Places upper bound on performance loss

What Is design space (# of cores) for arch. salvaging?
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Core salvaging: simple perf. model
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Salvaging makes sense for CMPs =5 cores
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Arch. salvaging: targeted instructions

* “Infrequent” instructions
—Those used by only some applications
—Or used In most applications, but only a few times
—E.g., certain floating point & SIMD instructions
e Disallow salvaging “critical” instructions
—Load, store, simple int ALU, branch
—Defect In executing critical inst. -> disable core

e Structures used by only infrequent instructions
are large fraction of execution-unit area

Are there enough infrequent instructions?
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Instruction Occurrence

Fraction of non-overlapping 100K-inst. windows that do not contain an

Instruction class for 5 workloads
I: spec int 2K f: spec fp 2K 6. spec 2006
S: server m : multimedia

Ifesm
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Many (large-area) instructions quite infrequent
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Methodology

e Modeled architecture: Intel® Core-2™ Jike
—8 cores; 8 MB shared last-level-cache

—4-1ssue out-of-order
—Each core: 64KB i1-cache, 64KB d-cache, 1MB L2

e Assume 1000-cycle thread migration overhead

—Fall back to disabling for 150K cycles if > 2
migrations in 40K cycles

 Workloads: spec00, spec06, server, multimedia

SPEARS-FACT




Core salvaging performance

(8 core die)
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™04 of execution unit area covered

Average 5-7% better throughput than disabling
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Architectural salvaging coverage

e EXecution-unit case study:
—uarch covered @ max 16% of execution-unit area
—We show proof-of-concepts for arch. covering 46%o
—Accounts for 9% of vulnerable core area vs 3%

e Core level:
— parch covered max 10.6% of core
—Arch covers nearly that much in exec. units

—Combine exe w/ hybrid h/w salvaging (shown in
paper), cover 21% of vulnerable core area

Core area
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Conclusions

e Hard errors in logic are an increasing risk

e Architectural vs parch. core salvaging
—Cover = portion of core w/ less invasive technique
—Cover 46% of execution units vs 16% for parch
—Covered exec units: 9% of vulnerable core area

* Apply salvaging at manufacture or in field

e Better performance than core disabling
—Core with minor defect -> nearly full performance
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