Spatio-Temporal Memory Streaming

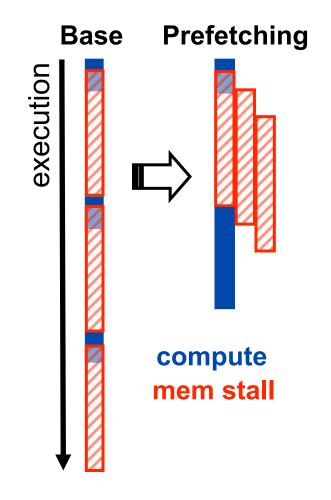
Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki and Babak Falsafi

36th International Symposium on Computer Architecture

June 22, 2009

Computer Architecture Lab at Carnegie Mellon

Michigan Engineering

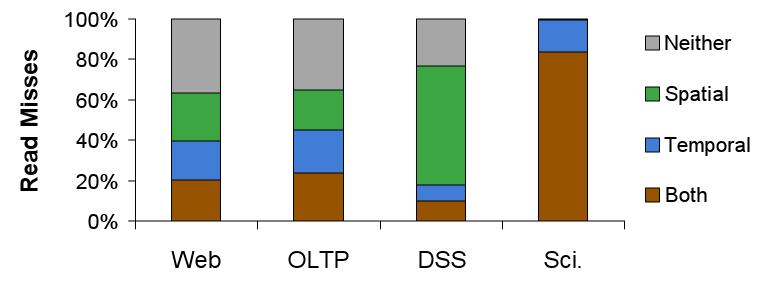


Memory Wall: Performance Bottleneck

Especially for server apps

- Large data footprints
- Pointer-intensive structures

Prefetching can hide long memory latency [ISCA '05] [ISCA '06] [Micro '07]



But, no single technique effective for OLTP, DSS & Web

Observation: Temporal, Spatial Predictions Different

Different predictors capture different behaviors

- Temporal: recurring memory access sequences (pointers)
- Spatial: recurring data layouts (structs)

Spatial/temporal disjoint; opportunity to exploit both

How to Combine?

Concept: independent temporal & spatial

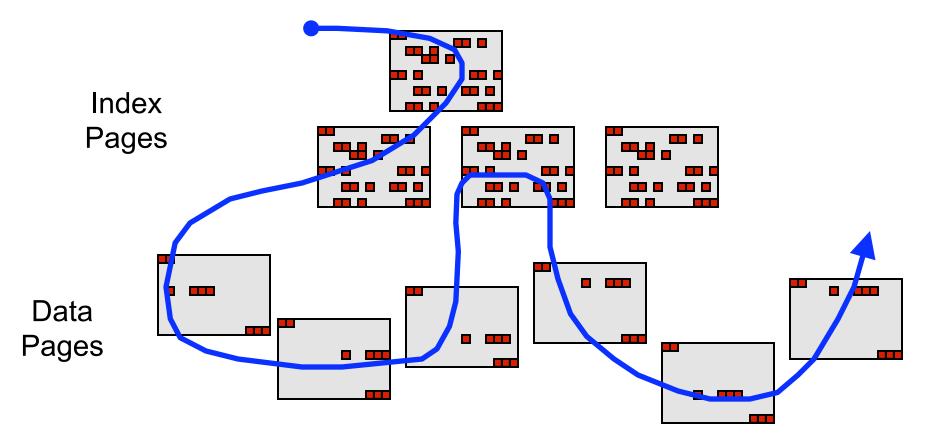
- Duplicates prefetches \Rightarrow inefficient
- Prefetchers interfere \Rightarrow confuses training

Refinement: chain spatial predictions via temporal

- No sequence within spatial predictions
- Prefetches in wrong order \Rightarrow not timely

Solution: also learn order within spatial predictions

• Achieves high, consistent coverage & low mispredictions

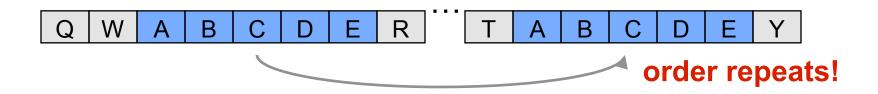

Contributions

- Opportunity for spatio-temporal prediction
 - 70% of read misses are predictable on average
- Temporal characterization of spatial accesses
 Sequences repetitive within & across layouts
- Spatio-Temporal Memory Streaming
 - Predicts unified spatio-temporal miss sequence
 - 62% of read misses on average
 - Mean speedup 1.31, \geq temporal or spatial alone

Outline

- Introduction
- Spatial and Temporal Prediction
- Spatio-Temporal Memory Streaming
- Results
- Conclusion

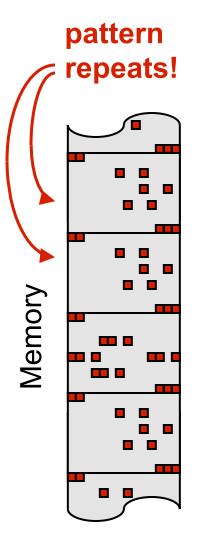
Example: Non-Clustered Index Scan



Sequence spans non-contiguous data pages Similar layouts within data pages

Temporal Memory Streaming (TMS) [Wenisch '05]

Records & replays recurring miss sequences


• Code traversals repeat \Rightarrow data traversals repeat

Sequences contain entire addresses

- \checkmark Good for pointer chasing \Rightarrow breaks dependence chains
- ✓ Startup costs amortized over long streams
- Cannot predict compulsory misses
- Large storage required (~2MB / processor)

Spatial Memory Streaming (SMS) [Somogyi '06]

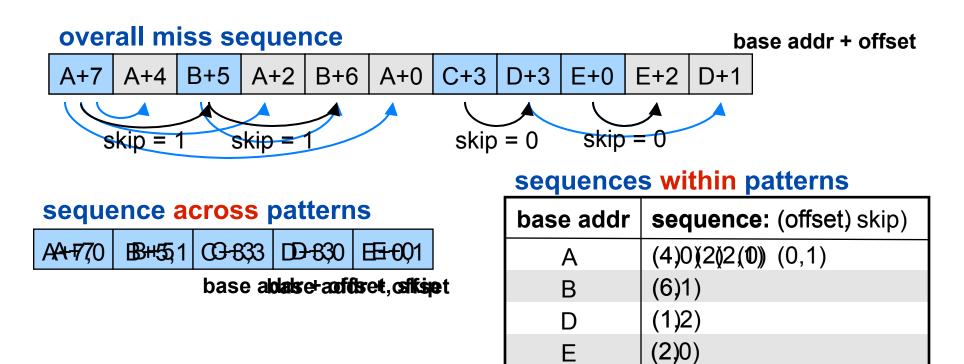
Exploits repetitive, large-scale data layouts in memory

- Pattern: offsets in logical region
- Trigger: first miss, used for lookup

Patterns encoded as bit vectors

- ✓ PC lookup \Rightarrow predicts compulsory misses
- ✓ Efficient storage (~80KB / processor)
- **x** Trigger miss per pattern \Rightarrow lost opportunity
- Unordered \Rightarrow BW spikes, wrong prioritization

Hybrid Spatio-Temporal Predictor


Naïve approach

- Record sequence across patterns
- Fetch entire pattern at a time
 - No priority across patterns
- But, triggers many patterns simultaneously
 - Accesses across patterns are interleaved!
 - Bursts of prefetches \Rightarrow pollution, BW spikes

Must prioritize prefetches across patterns

Deconstructing a Miss Sequence

Investigate temporal & spatial relationships

Reveive appreash operaters patterniss before Bce Incorrect order!

Spatio-Temporal Memory Streaming (STeMS)

Goal: reconstruct the overall miss sequence

- Using both temporal & spatial predictions
- \Rightarrow Prefetch cache blocks in order

Training: observe relative interleavings

- Record skips in temporal seq. and spatial patterns

Prediction: reconstruction buffer for staging

- Spread temporal predictions according to skips
- Trigger spatial lookup for each, insert predicted addresses

Generates simple address seq. for throttled streaming

Outline

- Introduction
- Spatial and Temporal Prediction
- Spatio-Temporal Memory Streaming
- Results
- Conclusion

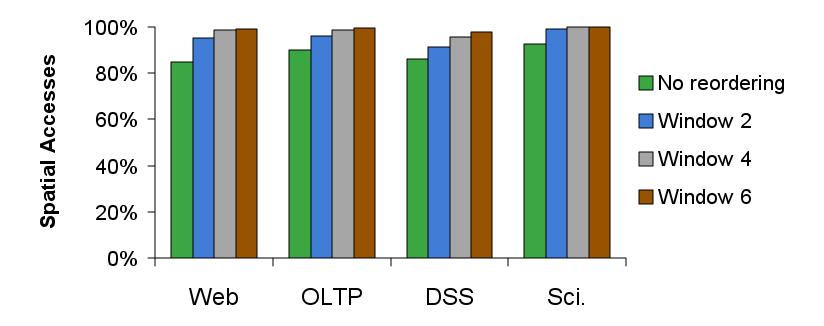
Methodology

Flexus [Wenisch '06]

- Full-system trace and OoO timing simulation
- Leverages SMARTS sampling

Benchmark Applications

- OLTP: TPC-C
 _IBM DB2 & Oracle
- DSS: TPC-H Qry 2,16,17
 –IBM DB2
- Web: SPECweb99
 - -Apache & Zeus
- Scientific
 - -em3d, ocean, sparse

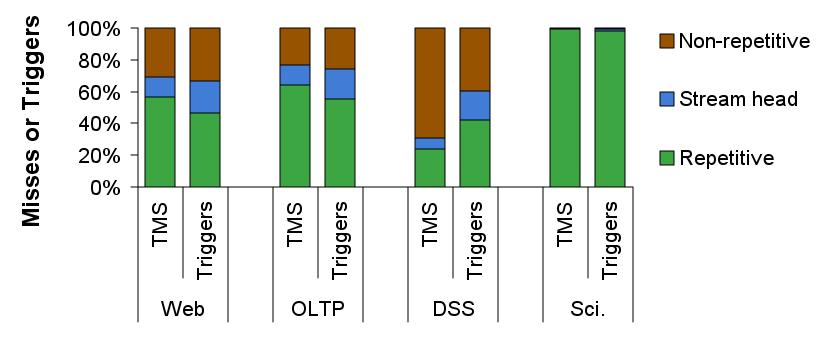

Model Parameters

- □ 16 4GHz SPARC CPUs
- □ 4-wide OoO; 96-entry ROB
- □ 64KB 2-way L1
- □ 8MB 8-way L2, 25-cycle lat.
- □ 40ns memory
- □ 25ns per-hop network
- □ TSO w/ speculation

Temporal Repetition Within Patterns

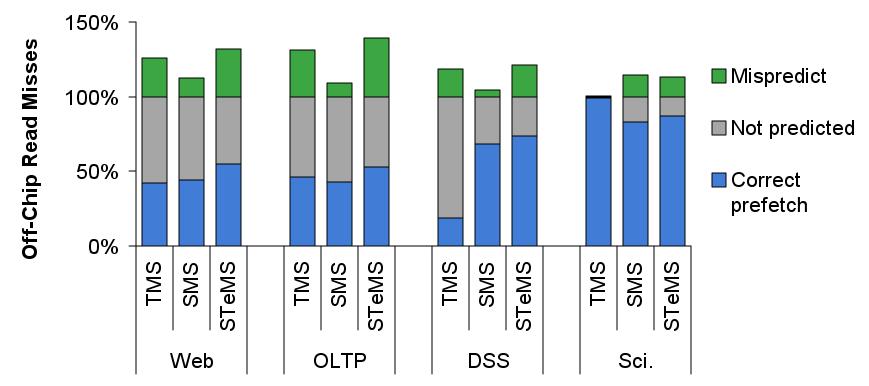
Compare access sequence of successive patterns

- Evaluate for small reordering windows



Seq. of accesses within patterns extremely repetitive

Temporal Repetition Across Patterns


Evaluate repetition with compression algorithm

- Past work (TMS): all miss addresses
- STeMS: only trigger misses

Similar opportunity for predicting seq. of triggers

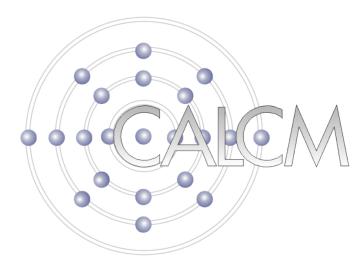
STeMS is effective across commercial workloads

Predicts 62% of misses, improves perf. 31% **OLTP/DSS** – matches TMS/SMS, **Web** – beats both

Related Work

- Stream Chaining
 - Reconstruct overall miss seq. using control flow
 - Better compulsory, worse temporal coverage
- Predictor Virtualization
 - Reduces dedicated on-chip storage for predictors
 - Can be applied to history structures in STeMS
- Epoch-base Correlation Prefetching
 - Improves timeliness of temporal predictions
 - In contrast, STeMS mainly targets spatial timeliness

[Burcea '08]


[Chou '07]

[Diaz '09]

Conclusion

- Spatial/temporal predictions disjoint
 - Opportunity to predict up to 70% of read misses
- Temporal repetition of spatial patterns
 - Near-perfect repetition within patterns
 - Similar repetition across patterns as all addresses
- Design for Spatio-Temporal Memory Streaming
 - Reconstructs total miss sequence
 - Predicts 62% of read misses, perf. improvement 31%
 - Coverage & speedup \geq temporal or spatial alone

Questions ?

STeMS Project Spatio-Temporal Memory Streaming www.ece.cmu.edu/~stems

Computer Architecture Laboratory Carnegie Mellon University <u>www.ece.cmu.edu/~calcm</u>