

Hybrid Cache Architecture (HCA) with Disparate Memory Technologies

Xiaoxia Wu[†], Jian Li[‡], Lixin Zhang[‡],

Evan Speight[‡], Ram Rajamony[‡], Yuan Xie[†]

[†] Pennsylvania State University

‡IBM Austin Research Laboratory

<u>Acknowledgement</u>: Elmootazbellah (Mootaz) Elnozahy, Hung Le, Balaram Sinharoy, William (Bill) J. Starke, and Chung-Lung Kevin Shum

- Motivation and Introduction
- Methodology
- Level based Hybrid Cache Architecture
- Region based Hybrid Cache Architecture
- 3D Hybrid Cache Stacking
- Conclusion

Introduction

Traditional SRAM-based Cache Architecture

- Limited size with CMP: cache-core balance
- Leakage power
- More cache levels: design overhead, coherence
- Non-Uniform Cache Architecture (wire delay)

Improve cache power-performance with Emerging Memory Technologies, under the same chip area/footprint

- Embedded DRAM
- Magnetic RAM
- Phase Change RAM
- Three-dimensional space

Different Memory Technologies

Comparisons

	SRAM	eDRAM	MRAM	PRAM
Density (ratio)	Low (1) <	High (4)	High (4)	High(16)
Dynamic Power Reduce Cache	Low miss rate	Medium <	Low for read; High for write	Medium for read; High for
Leakage Power	hit latend High	y Medium	Low	Low
Speed Low leakage po	Very Fast wer High	Fast dynamic p	Fast for read; Slow for write	Slow for read; Very slow for write
Non-volatility	No	No	Yes	Yes
Scalability	Yes	Yes	Yes	Yes
Endurance	10 ¹⁶	10 ¹⁶	>10 ¹⁵	108

Motivation

- Introduction and Motivation
- Methodology
- Level based Hybrid Cache Architecture
- Region based Hybrid Cache Architecture
- 3D Hybrid Cache Stacking
- Conclusions

Evaluation Methodology

8

Evaluation Setup

Cache	Density	Latency (cycles)	Dyn. eng (nJ)	Static power (W)
SRAM(1MB)	1	8	0.388	1.36
eDRAM(4MB)	4	24	0.72	0.4
MRAM(4MB)	4	Read:20, write:60	Read:0.4 write:2.3	0.15
PRAM(16MB)	16	Read:40 write:200	Read:0.8 write:1.5	0.3

Processor	8-way issue out-of-order, 8-core, 4GHz		
L1	32KB DL1, 32KB IL1, 128B, 4-way, 1 R/W port		
L2/L3/L4	See corresponding design cases		
Memory	400 cycles latency		

- Benchmarks: SpecInt06, Specjbb, NAS, Bioperf, Parsec
- Simulator: SystemSim full system simulator

- Introduction and Motivation
- Methodology
- Level based Hybrid Cache Architecture
- Intra-Level Hybrid Cache Architecture
- 3D Hybrid Cache Stacking
- Conclusions

LHCA: Performance and Power

- Introduction and Motivation
- Methodology
- Level based Hybrid Cache Architecture
- Region based Hybrid Cache Architecture
- 3D Hybrid Cache Stacking
- Conclusions

RHCA Hardware Support

Hardware support

- Saturating counter in slow and sticky bit in fast, swap buffer
- Minimum hardware support: 1-bit sticky bit in fast region

RHCA Configuration

 DNUCA policy: more fine grained, move a line to a closer bank on each hit, bank-based, same size

- Introduction and Motivation
- Methodology
- Level based Hybrid Cache Architecture
- Region based Hybrid Cache Architecture
- 3D Hybrid Cache Stacking
- Conclusions

3DHCA-configuration

• 3DHCA-C (3D LHCA): 256KB L2 SRAM, 4M L3 eDRAM, 32M L4 PRAM

- 3DHCA-D: 32M L2 fast, middle, slow region (3D RHCA)
 - Data in slow region can be moved to fast and middle regions
- 3DHCA-E: 4M L2 fast+slow region, 32M L3 PRAM (LHCA+RHCA)

Conclusion

- Hybrid cache architecture is promising to improve cache power-performance under same chip area/footprint
- RHCA and LHCA achieve better power-performance than SRAM-based design
- RHCA outperforms LHCA with minimal hardware support
- 3DHCA achieves better performance than LHCA and RHCA, while still maintains lower power than 2D SRAM baseline