
Berkeley ParLab 

Ten Ways to Waste a Parallel 
Computer 

 Kathy Yelick 

NERSC Director, Lawrence Berkeley 
National Laboratory 

EECS Department, UC Berkleey 



Berkeley ParLab 

Moore’s Law is Alive and Well 

2 

1.E-01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (in Thousands) 

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 
Burton Smith, Chris Batten, and Krste Asanoviç 



Berkeley ParLab 

But Clock Frequency Scaling Has Been 
Replaced by Scaling Cores / Chip 

3 

1.E-01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (in Thousands) 

Frequency (MHz) 

Cores 

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 
Burton Smith, Chris Batten, and Krste Asanoviç 



Berkeley ParLab 

Performance Has Also Slowed, Along 
with Power (the Root Cause of All This) 

4 

1.E-01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (in Thousands) 

Frequency (MHz) 

Power (W) 

Perf 

Cores 

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 
Burton Smith, Chris Batten, and Krste Asanoviç 



Berkeley ParLab 

This has Also Impacted 
HPC System Concurrency 

Exponential wave of increasing concurrency for forseeable future! 

1M cores sooner than you think! 

5 

Sum of the # of cores in top 15 systems (from top500.org) 



Berkeley ParLab 

New World Order 

• Goal: performance through parallelism 

• Power is overriding hardware concern: 

– Power density limits clock speed 

– Handheld devices limited by battery life 

– HPC systems may be >100 MW in 10 years 

• Performance is now a software concern 

• How can we lose performance and 

therefore lose the case for parallelism? 

6 



Berkeley ParLab 

#1: Build Systems with 
Insufficient Memory Bandwidth 

• Memory Bandwidth Starvation 
“Multicore puts us on the wrong side of the memory wall.  Will 

CMP ultimately be asphyxiated by the memory wall?”         
 --Thomas Sterling 

• Simple double buffering model uses only 

– Time to fill up all on-chip memory 
memory size / bandwidth 

– Time to compute on all on-chip data 

memory size bytes * algorithmic intensity /  ops-per-sec 

DRAM 
Processor 

Chip 

Nothing new, except 
that ops-per-sec on 
a chip (aggregate) is 
still going up 



Berkeley ParLab 

#1: Build Systems with Insufficient 
Memory Bandwidth 

• Under some assumptions about scaling over time 

• Can determine for a given algorithm class 
(constants matter!) when you are bandwidth-limited 

Technology to 
solve this 
problem if there 
is market 
pressure 



Berkeley ParLab 

#2: Don’t Take Advantage of Hardware 
Performance Features 

9 

3D Grid 

•+Y 

•+Z 

•+X 
•7-point nearest neightbors 

•y+1 

•y-1 

•x-1 

•z-1 

•z+1 

•x+1 
•x,y,z 

Nearest-neighbor 7point stencil on a 3D array 

Use Autotuning! 
 Write code generators and let 

computers do tuning 



Berkeley ParLab 

#3: Ignore Little’s Law 

• Experiment: Running on a fixed number of cores 

• 1 core per socket vs 2 cores per socket 

• Only 10% performance drop from sharing (halving) bandwidth 

NERSC application 
benchmarks 

Shalf et al 

Little’s Law: required concurrency = bandwidth * latency 
#outstanding_memory_fetches = bandwidth* latency 



Berkeley ParLab 

7 Point Stencil Revisited 

11 

• Cell and GTX280 are notable for both performance and 
energy efficiency  

Joint work with Kaushik Datta, Jonathan Carter, 
Shoaib Kamil, Lenny Oliker, John Shalf, and Sam 
Williams



Berkeley ParLab 

Why is the STI Cell So Efficient? 

• Unit stride access is as important as cache utilization on 
processors that rely on hardware prefetch 
– Tiling in unit stride direction is counter-productive: improves reuse, but 

kills prefetch effectiveness 

• Software controlled memory gives programmers more control 
– Spend bandwidth on what you use; bulk moves (DMA) hide latency 

Joint work with Shoaib Kamil, Lenny Oliker, John 
Shalf, Kaushik Datta



Berkeley ParLab 

#4: Turn Functional Problems into 
Performance Problems 

• Fault resilience introduces inhomogeneity in 
execution rates (error correction is not instantaneous) 

Slide source: John Shalf



Berkeley ParLab 
14 

#5: Over Synchronize Applications 

Computations as DAGs 

View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra



Berkeley ParLab 
15 

Slide source: Jack Dongarra



Berkeley ParLab 
16 

        DAG Scheduling Outperforms 
Bulk-Synchronous Style 

• UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 

– New problem in partitioned memory: allocator deadlock 

– Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands



Berkeley ParLab 

#6: Over Synchronize Communication 

• Use a programming model in which you 
can’t utilize bandwidth or “low” latency 

Joint work with Berkeley UPC Group



Berkeley ParLab 

Sharing and Communication Models:  
Two-sided vs One-sided Communication 

• Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data 
– Wildly popular in HPC, but cumbersome in some applications 
– Couples data transfer with synchronization 

• Using global address space decouples synchronization 
– Pay for what you need!   
– Note: Global Addressing  Cache Coherent Shared memory 

•address 

•message id 

•data payload 

•data payload 

•one-sided put message 

•two-sided message 

•network 

• interface 

•memory 

•host 

•CPU 

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group



Berkeley ParLab 

3D FFT on BlueGene/P 

Joint work with Rajesh Nishtala, Dan Bonachea, 
Paul Hargrove,and  rest of UPC group



Berkeley ParLab 

#7: Run Bad Algorithms 

•Algorithmic gains in last decade have                                                             
far outstripped Moore’s Law 

–Adaptive meshes 

    rather than uniform 

–Sparse matrices  

   rather than dense 

–Reformulation of  

  problem back to basics 

•Example of canonical “Poisson” problem on n points: 
–Dense LU: most general, but O(n3) flops on O(n2) data 

–Multigrid: fastest/smallest, O(n) flops on O(n) data 

Performance results: John Bell et al



Berkeley ParLab 

#8: Don’t Rethink Your Algorithms 

• Consider Sparse Iterative Methods 
• Nearest neighbor communication on a mesh 

• Dominated by time to read matrix (edges) from DRAM 

• And (small) communication and global synchronization 
events at each step 

– Can we lower data movement costs? 
• Take k steps “at once” with one matrix read  
     from DRAM and one communication phase 

– Parallel implementation 
• O(log p) messages vs.  O(k log p)  

– Serial implementation 
• O(1) moves of data  moves vs. O(k) 

• Performance of Akx operation relative to Ax and upper boun 
– Runs up to 5x faster on SMP 

Joint work with Jim Demmel, 
Mark Hoemman, Marghoob 

Mohiyuddin 



Berkeley ParLab 

But the Numerics have to Change! 

Work by Jim Demmel and Mark Hoemman 

Need to collaborate 



Berkeley ParLab 
02/11/2009 

#9: Choose “Hard” Applications  

Examples of such systems include 

• Elliptic: steady state, global space dependence 

• Hyperbolic: time dependent, local space dependence 

• Parabolic: time dependent, global space dependence 

Global vs Local Dependence 

– Global means either a lot of communication, or tiny 
time steps: hard to scale well in parallel 

– Local limits communication, e.g., nearest neighbor 

Global dependencies are inherent in some problems 

– E.g., incompressible fluids like blood flow (games and 
medicine), ocean dynamics (climate), … 



Berkeley ParLab 

#10: Use Heavy-Weight Cores 
Optimized for Serial Performance 

• Power5 (Server) 
– 389 mm2 

– 120 W @ 1900 MHz 

• Intel Core2 sc (Laptop) 
– 130 mm2 

– 15 W @ 1000 MHz 

• PowerPC450 (BlueGene/P) 
– 8 mm2 

– 3 W @ 850 MHz 

• Tensilica DP (cell phones) 
– 0.8 mm2 

– 0.09 W @ 650 MHz 

Intel Core2

Power 5

•Each core operates at 1/3 to 1/10th efficiency of largest chip, but you  

•can pack 100x more cores onto a chip and consume 1/20 the power! 

PPC450
TensilicaDP

John Shalf and the rest of the Green Flash team 



Berkeley ParLab 

Green Flash Summary 

• We propose a new approach to scientific 
computing that enables transformational changes 
for science 

– Choose the science target first (climate in this case) 

– Design systems for applications (rather than the reverse) 

– Design hardware, software, algorithms together using 
hardware emulation (RAMP) and auto-tuning 

•General Purpose •Special Purpose •Single Purpose

•Cray XT3 
•D.E. Shaw 

•Anton 
•MD Grape •BlueGene •Design for 

•Climate 

•Application Driven

John Shalf and the rest of the Green Flash team 



Berkeley ParLab 

A Short List of x86 Opcodes that 
Science Applications Don’t Need! 

John Shalf and the rest of the Green Flash team 



Berkeley ParLab 

More Wasted Opcodes 

•We only need 80 out of the nearly 300 ASM instructions in the x86 
instruction set! 

•Still have all of the 8087 and 8088 instructions! 

•Wide SIMD Doesn’t Make Sense with Small Cores 

•Neither does Cache Coherence 

•Neither does HW Divide or Sqrt for loops  

•Creates pipeline bubbles 

•Better to unroll it across the loops (like IBM MASS libraries) 

•Move TLB to memory interface because its still too huge (but still get 
precise exceptions from segmented protection on each core) 



Berkeley ParLab 

Green Flash Strawman  
System Design In 2008 

We examined three different approaches: 

• AMD Opteron: Commodity approach, lower efficiency for 
scientific applications offset by cost efficiencies of mass market 

• BlueGene: Generic embedded processor core and customize 
system-on-chip (SoC) services to improve power efficiency for 
scientific applications 

• Tensilica XTensa:  Customized embedded CPU w/SoC provides 
further power efficiency benefits but maintains programmability 

Processor Clock Peak/ 
Core 
(Gflops) 

Cores/ 
Socket 

Sockets Cores Power Cost 

2008 

AMD Opteron 2.8GHz 5.6 2 890K 1.7M 179 MW $1B+ 

IBM BG/P 850MHz 3.4 4 740K 3.0M 20 MW $1B+ 

Green Flash / 
Tensilica XTensa 

650MHz 2.7 32 120K 4.0M 3 MW $75M 

John Shalf and the rest of the Green Flash team 



Berkeley ParLab 

Ten Sources of Waste in Parallel Computing 

1) Insufficient memory bandwidth (HW) 

2) Ignore performance features (SW+HW) 

3) Ignore Little's Law (SW+HW) 

4) Hide faults in low level (SW+HW) 

5) Over synchronization globally (SW) 

6) Over synchronize communication (SW) 

7) Choose bad algorithms (Alg) 

8) Don’t rethink algorithms (Alg) 

9) Choose “hard” applications (Apps) 

10) Use overly-general processors (HW) 

29 



Berkeley ParLab 

Conclusions 

• Enable programmers to get 
performance 

– Expose features for performance 

– Don’t hide them 

• Go Green 

– Enable energy-efficient computers and 
software 

• Work with experts on software, 
algorithms, applications 

30 


